Build orientation in additive manufacturing influences the mechanical properties, surface quality, build time, and cost of the product. Rather than relying on trial-and-error or prior experience, the choice of build orientation can be formulated as an optimization problem. Consequently, orientation optimization has been a popular research topic for several decades, with new optimization methods being proposed each year. However, despite the rapid pace of research in additive manufacturing, there has not been a critical comparison of different orientation optimization methods. In this study, we present a critical review of 50 articles published since 2015 that proposes a method for orientation optimization for additive manufacturing. We classify included papers by optimization methods used, AM process modeled, and objective functions considered. While the pace of research in recent years has been rapid, most approaches we identified utilized similar objective functions and computational optimization techniques to research from the early 2000s. The most common optimization method in the included research was exhaustive search. Most methods focused on broad applicability to all additive manufacturing processes, rather than a specific process, but a few works focused on powder bed fusion and material extrusion. We also identified several areas for future work including integration with other design and process planning tasks such as topology optimization, more focus on practical implementation with users, testing of computational efficiency, and experimental validation of utilized objective functions.

This content is only available via PDF.
You do not currently have access to this content.