Abstract

Additive Manufacturing (AM) is a trending technology with great potential in manufacturing. In-situ process monitoring is a critical part of quality assurance for AM process. Anomalies need to be identified early to avoid further deterioration of the part quality. This paper presents an in-situ laser-based process monitoring and anomaly identification system to assure fabrication quality of Fused Filament Fabrication (FFF) machine. The proposed data processing and communication architecture of the monitoring system establishes the data transformation between workstation, FFF machine, and laser scanner control system. The data processing performs calibration, filtering, and segmentation for the point cloud of each layer acquired from a 3D laser scanner during the fabrication process. The point cloud dataset with in-plane surface depth information is converted into a 2D depth image. Each depth image is discretized into 100 equal regions of interest and then labeled accordingly. Using the image dataset, four Machine Learning (ML) classification models are trained and compared, namely Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Convolutional Neural Network (CNN), and Hybrid Convolution AutoEncoder (HCAE). The HCAE classification model shows the best performance based on F-scores to effectively classify the in-plane anomalies into four categories, namely empty region, normal region, bulge region, and dent region.

This content is only available via PDF.
You do not currently have access to this content.