Abstract

Advanced Driver Assistance Systems (ADAS) have become increasingly common in vehicles in the last decade. The majority of studies has focused on smaller vehicles with gross vehicle weight rating (GVWR) under 5,000lbs, predominantly sedans, for their ADAS evaluations. While it is sensible to use this style of vehicle because it is ubiquitous worldwide for a typical vehicle body style, these studies neglect full-size light-duty pickup trucks (FSLDPTs), GVWR 5,000 – 10,000lbs, which are abundant on the roads in the United States, 18% of vehicles. The increase in mass, higher center of gravity, and utilitarianism of the vehicles allows for unique conditions for studying the effects of ADAS. This work determines the best and worst location to be hit in a full-size light-duty pickup truck based on data for the industry sales leader in this class of vehicles. The objective is to use these results for future designs of ADAS technologies and their placement on the FSLDPT. While these methods could be applied to any vehicle, the FSLDPT sales leader will be investigated as it represents about 9% of registered vehicles in the United States. The results will be optimized with respect to cost in terms of initial up-front purchasing cost and post-accident vehicle repair cost.

This content is only available via PDF.
You do not currently have access to this content.