Abstract

Flexible multibody systems often include slender bodies that can be modeled as beams. In contrast with their three-dimensional counterparts, beam formulations are much more efficient and produce models that are more intuitive from engineering and design standpoints. This paper presents a modular approach for the analysis and design of complex beam cross-sections made of heterogeneous and isotropic materials. This approach builds on previous research by the authors, namely research that dealt with cross-sectional analysis and adjoint sensitivity analysis. In addition to the theoretical and software developments, a number of practical examples are shown and verified. The results show that this parametric approach facilitates the definition, analysis and design of complex beam cross-sections, all of which are necessary components in real-life design and manufacturing.

This content is only available via PDF.
You do not currently have access to this content.