The influence of inerter on the performance of passive suspension systems is studied by comparing six different suspension architectures using a simplified quarter-car model. The suspension architectures can have one or two springs, damper, and inerter. Ride comfort, road holding, and working space are considered as the objective functions, while the suspension spring stiffness, damping ratio, and inerter equivalent mass are taken as the design variables for the multi-objective optimization. The Pareto-optimal solutions are computed and compared in the objective functions domain. The results confirm that specific inerter architectures provide advantages when all the design variables are varied. The inerter benefits are more evident in all the considered architectures, when the suspension spring stiffness is kept constant.

This content is only available via PDF.
You do not currently have access to this content.