Operation of autonomous and semi-autonomous systems in hostile and expensive-to-access environments requires great care and a risk-informed operating mentality to protect critical system assets. Space exploration missions, such as the Mars Exploration Rover systems Opportunity and Curiosity, are very costly and difficult to replace. These systems are operated in a very risk-averse manner to preserve the functionality of the systems. By constraining system operations to risk-averse activities, scientific mission goals cannot be achieved if they are deemed too risky. We present a quantifiable method that increases the lifetime efficiency of obtaining scientific goals via the implementation of the Goal-Oriented, Risk Attitude-Driven Reward Optimization (GORADRO) method and a case study conducted with simulated testing of the method. GORADRO relies upon local area information obtained by the system during operations and internal Prognostics and Health Management (PHM) information to determine system health and potential localized risks such as areas where a system may become trapped (e.g.: sand pits, overhangs, overly steep slopes, etc.) while attempting to access scientific mission objectives through using an adaptable operating risk attitude. The results of our simulations and hardware validation using GORADRO show a large increase in the lifetime performance of autonomous rovers in a variety of environments, terrains, and situations given a sufficiently tuned set of risk attitude parameters. Through designing a GORADRO behavioral risk attitude set of parameters, it is possible to increase system resilience in unknown and dangerous environments encountered in space exploration and other similarly hazardous environments.

This content is only available via PDF.
You do not currently have access to this content.