Flapping wing unmanned air vehicles (UAVs) are small light weight vehicles that typically have short flight times due to the small size of the batteries that are used to power them. During longer missions, the batteries must be recharged. The lack of nearby electrical outlets severely limits the locations and types of missions that these UAVs can be flown in. To improve flight time and eliminate the need for electrical outlets, solar cells can be used to harvest energy and charge/power the UAV. Robo Raven III, a flapping wing UAV, was developed at the University of Maryland and consists of wings with integrated solar cells. This paper aims to investigate how the addition of solar cells affects the UAV. The changes in performance are quantified and compared using a load cell test as well as Digital Image Correlation (DIC). The UAV platform reported in this paper was the first flapping wing robotic bird that flew using energy harvested from on-board solar cells. Experimentally, the power from the solar cells was used to augment battery power and increase operational time.

This content is only available via PDF.
You do not currently have access to this content.