We investigate the collective nonlinear behavior of an array of micro cantilevers interacting by fringing electrostatic fields and fabricated of silicon on insulator (SOI) wafer. The interaction is due to the mechanical coupling originated in the flexibility of the anchor and of the electrostatic coupling through voltage-dependent electrostatic force. In the framework of the reduced order model based on the Galerkin decomposition the array is considered as an assembly of single degree of freedom oscillators. The mechanical coupling matrix is extracted using the full scale finite element analysis of the array while the electrostatic force is approximated by a fit build using the three-dimensional numerical simulation. We show numerically and experimentally that large amplitude collective vibrations of the array can be achieved using parametric excitation while the dynamic properties of the array can be efficiently tuned by the applied voltage.

This content is only available via PDF.
You do not currently have access to this content.