There has been a growing interest in recent years in the area of Fractional Optimal Control (FOC). In this paper, we present a formulation for a class of FOC problems, in which a performance index is defined as an integral of a quadratic function of the state and the control variables, and a dynamic constraint is defined as a Fractional Differential Equation (FDE) linear in both the state and the control variables. The fractional derivative is defined in the Caputo sense. In this formulation, the FOC problem is reduced to a Fractional Variational Problem (FVP), and the necessary differential equations for the problems are obtained using the recently developed theories for FVPs. For the numerical solutions of the problems, a direct approach is taken in which the solutions are approximated using a truncated Fractional Power Series (FPS). An error analysis is also performed. It is demonstrated that the solution converges from above in the sense that the value of the approximate performance index is always higher than the optimum performance index. An expression for the error in the performance index is also given. The application of a FPS and an optimality criterion reduces the FOC to a set of linear algebraic equations which are solved using a linear solver. It is demonstrated numerically that the solution converges as the number of terms in the series increases, and the approximate solution approaches to the analytical solution as the order of the fractional derivative approaches to an integer order derivative. Numerical results are presented to demonstrate the performance of the Formulation.

This content is only available via PDF.
You do not currently have access to this content.