This is a short version of a paper on the solution of a Fractional Dirac Equation (FDE). In this paper, we present two different techniques to obtain a new FDE. The first technique is based on a Fractional Variational Principle (FVP). For completeness and ease in the discussion to follow, we briefly describe the fractional Euler-Lagrange equations, and define a new Lagrangian Density Function to obtain the desired FDE. The second technique we define a new Fractional Klein-Gordon Equation (FKGE) in terms of fractional operators and fractional momenta, and use this equation to obtain the FDE. Our FDE could be of any order. We present eigensolutions for the FDE which are very similar to those for the regular Dirac equation. We give only a brief exposition of the topics here. An extended version of this work will be presented elsewhere.

This content is only available via PDF.
You do not currently have access to this content.