Understanding how and why changes propagate during engineering design is critical because most products and systems emerge from predecessors and not through clean sheet design. This paper applies change propagation analysis methods and extends prior reasoning through examination of a large data set from industry including 41,500 change requests, spanning 8 years during the design of a complex sensor system. Different methods are used to analyze the data and the results are compared to each other and evaluated in the context of previous findings. In particular the networks of connected parent, child and sibling changes are resolved over time and mapped to 46 subsystem areas. A normalized change propagation index (CPI) is then developed, showing the relative strength of each area on the absorber-multiplier spectrum between −1 and +1. Multipliers send out more changes than they receive and are good candidates for more focused change management. Another interesting finding is the quantitative confirmation of the “ripple” change pattern. Unlike the earlier prediction, however, it was found that the peak of cyclical change activity occurred late in the program driven by systems integration and functional testing. Patterns emerged from the data and offer clear implications for technical change management approaches in system design.

This content is only available via PDF.
You do not currently have access to this content.