While the potential for the use of synthetic jet actuators to achieve flow control has been noted fro some tme, most studies of these devices have been empirical or experimental in nature. Several technical issues must be resolved to achieve rigorous, model-based, closed loop control methodologies for this class of actuator. The goal of this paper is consequently two-fold. First, we seek to derive and evaluate model order reduction methods based on proper orthogonal decomposition that are suitable for synthetic jet actuators. Secondly, we seek to derive rigorously stable feedback control laws for the derived reduced order models. The readability of the control strategies is discussed, and a numerical study of the effectiveness of the reduced order models are summarized.

This content is only available via PDF.
You do not currently have access to this content.