A structure is often an assembly of several components coupled by various joints such as bolted or riveted joints. Component mode synthesis methods are very practical tools to define a dynamic model. But, several points have to be examined and improved in order to give a complet representation of the modal behaviour of the whole structure.

For example, rotational degrees of freedom on connecting points between adjacent substructures should be estimated to give a better representation of the multidirectional connecting forces. These informations may be evaluated through a method based on both interpolation and spatial derivation of the experimental translational displacements of the components.

Unlike many other structural elements, the dynamic properties of a connection are very difficult to evaluate. So, we propose a method of determining joint stiffness characteristics. We consider only the conservative problem so the damping properties of the different components of the considered assembly are not taken into account. The joint characteristics are extracted comparing experimental modal data base and component mode synthesis simulation. The updating procedure is based on a nonlinear iterative least-square method. Results are presented concerning a particular assemblie of rectangular plates. Structural modification is applied for one component. We show that the joint properties stay the same if the connecting interface is not modified. The close correlation between predicted and experimental results demonstrate that this method is well adaptated to the study of structural modifications.

This content is only available via PDF.
You do not currently have access to this content.