Abstract

Computer Aided Geometric Design of surfaces sometimes presents problems that were not envisioned by mathematicians in differential geometry. This paper presents mathematical results that pertain to the design of second order smooth blending surfaces. Second order smoothness normally requires that normal curvatures agree along all tangent directions at all points of the common boundary of two patches, called the linkage curve. The Linkage Curve Theorem proved here shows that, for the blend to be second order smooth when it is already first order smooth, it is sufficient that normal curvatures agree in one direction other than the tangent to a first order continuous linkage curve. This result is significant for it substantiates earlier works in computer aided geometric design. It also offers simple practical means of generating second order blends for it reduces the dimensionality of the problem to that of curve fairing, and is well adapted to a formulation of the blend surface using sweeps. From a theoretical viewpoint, it is remarkable that one can generate second order smooth blends with the assumption that the linkage curve is only first order smooth. This property may be helpful to the designer since linkage curves can be constructed from low order piecewise continuous curves.

This content is only available via PDF.
You do not currently have access to this content.