Part II presents a technique which uses the general point to line kinematic constraint equation presented in Part I coupled with an incidence matrix to automatically formulate the kinematic constraint equations between contacting rigid bodies and solve the resulting dynamic equations of motion. The automatic determination of system connectivity coupled with impulse-momentum theory enables the strategy to handle impact between rigid bodies in line contact or between rigid bodies in topologically complex systems. The characterizations of the changes in the kinematic constraints, as described by Part I, are combined with the incidence matrix and impact analysis to form an automatic dynamic simulation strategy. The strategy automatically predicts, detects, and determines the changes in the system topology and then reformulates the equations of motion without the user specifying the kinematic constraint changes and resulting system topology. The simulation results of two example systems are presented. The examples illustrate the effect the boundaries have on a system’s motion and show that the only connectivity data required by the strategy is the initial system topology.

This content is only available via PDF.
You do not currently have access to this content.