PFBR, India’s first commercial fast breeder reactor employing fast fission is a challenging project from technological point of view to meet the energy security of the country. It is currently under advanced stage of construction at Kalpakkam, India. PFBR is equipped with two independent, fast acting and diverse shutdown systems. A shutdown system comprises of sensors, logic circuits, drive mechanisms and neutron absorbing rods. The absorber rods of the second shutdown system of PFBR are called as Diverse Safety rods (DSR) and their drive mechanisms are called as Diverse Safety Rod Drive Mechanisms (DSRDM). DSR are normally parked above active core by DSRDM. On receiving scram signal, Electromagnet of DSRDM is de-energised and it facilitates fast shutdown of the reactor by dropping the DSR in to the active core. For the prototype development of DSR and DSRDM, three phases of testing namely individual component testing, integrated functional testing in room temperature and endurance testing at high temperature sodium were planned and are being done. The electromagnet of DSRDM operates at high temperature sodium environment continuously. It has been separately tested at room temperature, in furnace and in sodium. Specimens simulating the contact conditions between Electromagnet and armature of DSR have been tested to rule out self welding possibility. The Dashpot provided to decelerate the DSR at the end of its free fall has been initially tested in water and then in sodium. The prototype of DSR has been tested in flowing water to determine the pressure drop and drop time. The functional testing of the integrated prototype DSRDM and DSR in aligned and misaligned conditions in air/water has been completed. The performance testing of the integrated system in sodium has been done in three campaigns. Based on the performance testing in the first two campaigns of sodium testing, design modifications and manufacturing quality improvement were done. Methods of drop time measurement based on ultrasonics and acoustics were also developed along with the first two campaigns. During the third campaign of sodium testing, the performance of the system has been verified with 30 mm misalignment at various temperatures. The third campaign has qualified the system for 10 years of operation in reactor. This paper describes the test setup for all the above mentioned testing and also gives typical test results.

This content is only available via PDF.
You do not currently have access to this content.