Abstract

In turbomachinery applications the possibility to reduce size and costs of main flow-path components, by increasing shaft rotating speed, has always been appealing. The technological challenge in increasing this power density capability is typically related to performance prediction, to operating stress in blades and shafts, as well as to the need for a more accurate rotor-dynamic analysis. Yet another aspect, often reduced to standard assessments in less demanding applications, is related to the analysis of overspeed scenarios where, following a sudden loss of load and/or driven inertia, the turbomachine shall maintain its mechanical integrity.

Especially in steam turbines applications, where the behavior of the machine is strongly affected by the plant conditions, valves intervention time and connected volumes, the reduction of the rotor inertia, against comparable power, may produce overspeed scenarios that can become a primary design constraint and, if overlooked, may have both availability and safety implications.

In this paper several approaches to the analysis of overspeed scenarios are discussed, with increasing level of detail. The energy-based overspeed analysis method, as required by API612, is first discussed against practical design cases. A more accurate dynamic model is then presented, and its results compared with those of the energy-based approach. Finally, the sensitivity analysis of the overspeed peak value with respect to critical design parameters is discussed. With respect to previous works, mostly based on load rejection scenarios, the main focus is on the scenario of sudden coupling loss.

This content is only available via PDF.
You do not currently have access to this content.