Increasing turbine inlet temperature (TIT) of recuperated gas turbines would lead to simultaneously high efficiency and power density, making them prime candidates for low-emission aeronautics applications, such as hybrid-electric aircraft. The Inside-out Ceramic Turbine (ICT) architecture achieves high TIT by using compression-loaded monolithic ceramics. To resist inertial forces due to blade tip speed exceeding 450 m/s, the shroud of the ICT is made of carbon-polymer composite, wound around a metallic cooling ring. This paper demonstrates that it is beneficial to use a titanium alloy cooling ring with a thermal barrier coating (TBC), rather than nickel superalloys, for the interstitial cooling ring protecting the carbon-polymer from the hot combustion gases. A numerical Design of Experiments (DOE) analysis shows the design trade-offs between the minimum safety factor and the required cooling power for multiple geometries. An optimized high-pressure first turbine stage of a 500 kW microturbine concept using ceramic blades and a titanium cooling ring in an ICT configuration is presented. Its structural performance (minimum safety factor of 1.4) as well as its cooling losses (2% of turbine stage power) are evaluated. Finally, a 20 kW-scale prototype is tested at 300 m/s and a TIT of 1375 K during 4hrs to demonstrate the viability of the concept. Experiments show that the polymer composite was kept below its maximum safe operating temperature and components show no early signs of degradation.

This content is only available via PDF.
You do not currently have access to this content.