700°C High Ultra Supercritical (HUSC) technology is taken into account as a more efficient clean coal-fired power generation technology which can achieve higher efficiency and less CO2 emission. With the increase of the main steam and reheat steam temperature, the temperature of regenerative extraction increased accordingly. This not only means higher investment cost and higher unreliability of power plant, but also leads to a great reduction of energy grade efficiency. To solve the above-mentioned problem, we introduce a novel system, called echelon cycle system (EC system). In EC system, a BEST (Backpressure Extraction Steam Turbine) is added, which provides power for feed-water pump and steam for feed-water heaters. The steam source of high temperature regenerative extractions is switched from main turbine to BEST, and the steam source of BEST is cold-reheat. Hence the highest regenerative extraction steam temperature decreased accordingly. EC system has been demonstrated to be a more efficient system by exergy theory[1] and energy grade theory.

Three types of EC system are proposed in this paper. Thermal performance calculation of these three types of EC system under rated-load condition and part-load condition is carried out to evaluate and compare the economy of system. In order to obtain a more appropriate thermodynamic system solution, safety and restriction should also be given sufficient consideration. Meanwhile, the matrix solution method for energy grade efficiency of EC system is derived in this paper. Finally, energy grade theory is used to analyze how different schemes cause different hate rate profits.

This content is only available via PDF.
You do not currently have access to this content.