A hybrid foil-magnetic bearing is combination of a foil bearing and a magnetic bearing, which takes advantages of both bearings while compensating each other the weaknesses. It is a solution of friction and wear of foil bearings at low speeds and limited load capacity of magnetic bearings. Furthermore, load sharing and control of dynamics can be achieved in a hybrid foil-magnetic bearing. However, in the hybrid foil-magnetic bearing, the journal should run at certain eccentricity and attitude angle in order to take part of the loads, but the magnetic bearing would attempt to force the journal to the reference position at all times while using a conventional PID controller. Therefore, it is necessary to design a new control algorithm to overcome the contradictions. In this paper, the steady-state characteristics of a hybrid foil-magnetic bearing were analyzed. Then a searching algorithm was presented and a steady-state controller was designed to determine the steady-state working position of the hybrid foil-magnetic bearings. Finally, simulations were done to verify performances of the searching algorithm and designed steady-state controller, and the results show its validity.

This content is only available via PDF.
You do not currently have access to this content.