Interlaminar crack growth resistances were evaluated for five different SiC fiber-reinforced ceramic matrix composites (CMCs) including three gas-turbine grade MI SiC/SiC composites. Modes I and II crack growth resistances, GI and GII, were determined at ambient temperature using double cantilever beam (DCB) and end notched flexure (ENF) methods, respectively. The CMCs exhibited GI = 200–500 J/m2 and GII = 200–900 J/m2. All the composites (except for one SiC/CAS composite) showed rising R-curve behavior either in mode I or in mode II, presumably attributed to fiber bridging (in modes I and II) and frictional constraint (mode II) in the wake region of a propagating crack. A glass fiber-reinforced epoxy polymer matrix composite, used as comparison, showed typically 2-3 and 8 times greater in GI and GII, respectively, compared to the CMCs. Experimental error analysis regarding the effect of the off-the-center of a crack plane on GI and GII was also made.

This content is only available via PDF.
You do not currently have access to this content.