0

IN THIS ISSUE


Research Papers

J Biomech Eng. 2018;140(11):111001-111001-8. doi:10.1115/1.4040451.

Posterior spinal fixation based on long spinal rods is the clinical gold standard for the treatment of severe deformities. Rods need to be contoured prior to implantation to fit the natural curvature of the spine. The contouring processes is known to introduce residual stresses and strains which affect the static and fatigue mechanical response of the implant, as determined through time- and cost-consuming experimental tests. Finite element (FE) models promise to provide an immediate understanding on residual stresses and strains within a contoured spinal rods and a further insight on their complex distribution. This study aims at investigating two rod contouring strategies, French bender (FB) contouring (clinical gold standard), and uniform contouring, through validated FE models. A careful characterization of the elastoplastic material response of commercial implants is led. Compared to uniform contouring, FB induces highly localized plasticizations in compression under the contouring pin with extensive lateral sections undergoing tensile residual stresses. The sensitivity analysis highlighted that the assumed postyielding properties significantly affect the numerical predictions; therefore, an accurate material characterization is recommended.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111002-111002-5. doi:10.1115/1.4040939.

When aiming at assessing motor control development, natural walking (NW), and tandem walking (TW) are two locomotor tasks that allow analyzing different characteristics of motor control performance. NW is the reference locomotor task, expected to become more and more automatic with age. TW is a nonparadigmatic task used in clinics to highlight eventual impairments and to evaluate how a child deals with a new challenging motor experience. This work aims at investigating motor development in school-aged children, by assessing quantitatively their performance during TW and NW. Eighty children (6–10 years) participated in the study. Trunk acceleration data and nonlinear measures (recurrence quantification analysis (RQA), and multiscale entropy (MSE)) were used to characterize trunk postural control and motor complexity. The results were analyzed with respect to age and standard clinical assessment of TW (number of correct consecutive steps), by means of Spearman correlation coefficients. RQA and MSE allowed highlighting age-related changes in both postural control of the trunk and motor complexity, while classic standard assessment of TW resulted uniformly distributed in the different age groups. The present results suggest this quantitative approach as relevant when assessing the motor development in schoolchildren and complementary to standard clinical tests.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111003-111003-12. doi:10.1115/1.4040337.

Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality, and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N = 10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N = 10). Moreover, the durability of endovascular devices is investigated analyzing the displacement forces (DFs) acting on them. The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly prothrombotic hemodynamic structures are strongly associated with the geometry of the aortoiliac tract postoperatively; and (3) DFs are associated with cross-sectional area of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical followup studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111004-111004-8. doi:10.1115/1.4040586.

At present, the current gold-standard for osteoporosis diagnosis is based on bone mineral density (BMD) measurement, which, however, has been demonstrated to poorly estimate fracture risk. Further parameters in the hands of the clinicians are represented by the hip structural analysis (HSA) variables, which include geometric information of the proximal femur cross section. The purpose of this study was to investigate the suitability of HSA parameters as additional hip fracture risk predictors. With this aim, twenty-eight three-dimensional patient-specific models of the proximal femur were built from computed tomography (CT) images and a sideways fall condition was reproduced by finite element (FE) analyses. A tensile or compressive predominance based on minimum and maximum principal strains was determined at each volume element and a risk factor (RF) was calculated. The power of HSA variables combinations to predict the maximum superficial RF values was assessed by multivariate linear regression analysis. The optimal regression model, identified through the Akaike information criterion (AIC), only comprises two variables: the buckling ratio (BR) and the neck-shaft angle (NSA). In order to validate the study, the model was tested on two additional patients who suffered a hip fracture after a fall. The results classified the patients in the high risk level, confirming the prediction power of the adopted model.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111005-111005-9. doi:10.1115/1.4040587.

Metastatic lesions of the vertebra are associated with risk of fracture, which can be disabling and life-threatening. In the literature, attempts are found to identify the parameters that reduce the strength of a metastatic vertebra leading to spine instability. However, a number of controversial issues remain. Our aim was to quantify how the strain distribution in the vertebral body is affected by the presence and by the size of a simulated metastatic defect. Five cadaveric thoracic spine segments were subjected to non-destructive presso-flexion while intact, and after simulation of metastases of increasing size. For the largest defect, the specimens were eventually tested to failure. The full-field strain distribution in the elastic range was measured with digital image correlation (DIC) on the anterior surface of the vertebral body. The mean strain in the vertebra remained similar to the intact when the defects were smaller than 30% of the vertebral volume. The mean strains became significantly larger than in the intact for larger defects. The map of strain and its statistical distribution indicated a rather uniform condition in the intact vertebra and with defects smaller than 30%. Conversely, the strain distribution became significantly different from the intact for defects larger than 30%. A strain peak appeared in the region of the simulated metastasis, where fracture initiated during the final destructive test. This is a first step in understanding how the features of metastasis influence the vertebral strain and for the construction of a mechanistic model to predicted fracture.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111006-111006-10. doi:10.1115/1.4040966.

Augments are a common solution for treating bone loss in revision total knee arthroplasty (TKA) and industry is providing to surgeons several options, in terms of material, thickness, and shapes. Actually, while the choice of the shape and the thickness is mainly dictated by the bone defect, no proper guidelines are currently available to select the optimal material for a specific clinical situation. Nevertheless, different materials could induce different bone responses and, later, potentially compromise implant stability and performances. Therefore, in this study, a biomechanical analysis is performed by means of finite element modeling about existing features for augment designs. Based upon a review of available products at present, the following augments features were analyzed: position (distal/proximal and posterior), thickness (5, 10, and 15 mm), and material (bone cement, porous metal, and solid metal). For all analyzed configurations, bone stresses were investigated in different regions and compared among all configurations and the control model for which no augments were used. Results show that the use of any kind of augment usually induces a change in bone stresses, especially in the region close to the bone cut. The porous metal presents result very close to cement ones; thus, it could be considered as a good alternative for defects of any size. Solid metal has the least satisfying results inducing the highest changes in bone stress. The results of this study demonstrate that material stiffness of the augment should be as close as possible to bone properties for allowing the best implant performances.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111007-111007-10. doi:10.1115/1.4040940.

We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111008-111008-9. doi:10.1115/1.4040941.

Anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to cardiac ischemia during intense physical activity. Although AAOCA is responsible for sudden cardiac death (SCD) among young athletes and soldiers, the mechanisms underlying the coronary occlusion during physical effort still have to be clarified. The present study investigates the correlation between geometric features of the anomaly and coronary lumen narrowing under aortic root dilatations. Idealized parametric computer-aided designed (CAD) models of the aortic root with anomalous and normal coronaries are created and static finite element (FE) simulations of increasing aortic root expansions are carried out. Different coronary take-off angles and intramural penetrations are investigated to assess their role on coronary lumen narrowing. Results show that increasing aortic and coronary pressures lead to lumen expansion in normal coronaries, particularly in the proximal tract, while the expansion of the anomalous coronaries is impaired especially at the ostium. Concerning the geometric features of the anomaly, acute take-off angles cause elongated coronary ostia, with an eccentricity increasing with aortic expansion; the impact of the coronary intramural penetration on the lumen narrowing is limited. The present study provides a proof of concept of the biomechanical reasons underlying the lumen narrowing in AAOCA during aortic expansion, promoting the role of computational simulations as a tool to assess the mechanisms of this pathology.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111009-111009-8. doi:10.1115/1.4040588.

Iris-fixated aphakic intraocular lenses (IFIOL) are used in cataract surgery when more common intraocular lenses (IOL) cannot be adopted because of the absence of capsular bag support. These lenses can be implanted on either the posterior or the anterior surface of the iris. In this work, we study whether one of these options is preferable over the other from the mechanical point of view. In particular, we focus on the forces that the IFIOL transmits to the iris, which are associated with the risk of lens dislocation. We study the problem numerically and consider aqueous flow induced by saccadic rotations in the cases of an IFIOL in the anterior and posterior sides of the iris. The considered IFIOL is the Artisan Aphakia +30.0 D lens (IFIOL) produced by Ophtec BV. We perform the simulations in openfoam. We find that the forces transmitted by the aphakic IFIOL to the iris are significantly higher in the case of posterior implantation. This suggests that lens implantation on the posterior surface of the iris might be associated with a higher risk of lens dislocation, when an inadequate amount of iris tissue is enclavated during implantation.

Topics: Lenses (Optics)
Commentary by Dr. Valentin Fuster
J Biomech Eng. 2018;140(11):111010-111010-6. doi:10.1115/1.4041541.

Accurate characterization of the craniomaxillofacial (CMF) skeleton using finite element (FE) modeling requires representation of complex geometries, heterogeneous material distributions, and physiological loading. Musculature in CMF FE models are often modeled with simple link elements that do not account for fiber bundles (FBs) and their differential activation. Magnetic resonance (MR) diffusion-tensor imaging (DTI) enables reconstruction of the three-dimensional (3D) FB arrangement within a muscle. However, 3D quantitative validation of DTI-generated FBs is limited. This study compares 3D FB arrangement in terms of pennation angle (PA) and fiber bundle length (FBL) generated through DTI in a human masseter to manual digitization. CT, MR-proton density, and MR-DTI images were acquired from a single cadaveric specimen. Bone and masseter surfaces were reconstructed from CT and MR-proton density images, respectively. PA and FBL were estimated from FBs reconstructed from MR-DTI images using a streamline tracking (STT) algorithm (n = 193) and FBs identified through manual digitization (n = 181) and compared using the Mann–Whitney test. DTI-derived PAs did not differ from the digitized data (p = 0.411), suggesting that MR-DTI can be used to simulate FB orientation and the directionality of transmitted forces. Conversely, a significant difference was observed in FBL (p < 0.01) which may have resulted due to the tractography stopping criterion leading to early tract termination and greater length variability. Overall, this study demonstrated that DTI can yield muscle FB orientation data suitable to representative directionality of physiologic muscle loading in patient-specific CMF FE modeling.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In