Research Papers

J Biomech Eng. 2017;139(12):121001-121001-11. doi:10.1115/1.4037853.

Advancements in computational musculoskeletal biomechanics are constrained by a lack of experimental measurement under real-time physiological loading conditions. This paper presents the design, configuration, capabilities, accuracy, and repeatability of The University of Texas at El Paso Joint Load Simulator (UTJLS) by testing four cadaver knee specimens with 47 real-time tests including heel and toe squat maneuvers with and without musculotendon forces. The UTJLS is a musculoskeletal simulator consisting of two robotic manipulators and eight musculotendon actuators. Sensors include eight tension load cells, two force/torque systems, nine absolute encoders, and eight incremental encoders. A custom control system determines command output for position, force, and hybrid control and collects data at 2000 Hz. Controller configuration performed forward-dynamic control for all knee degrees-of-freedom (DOFs) except knee flexion. Actuator placement and specimen potting techniques uniquely replicate muscle paths. Accuracy and repeatability standard deviations across specimen during squat simulations were equal or less than 8 N and 5 N for musculotendon actuators, 30 N and 13 N for ground reaction forces (GRFs), and 4.4 N·m and 1.9 N·m for ground reaction moments. The UTJLS is the first of its design type. Controller flexibility and physical design support axis constraints to match traditional testing rigs, absolute motion, and synchronous real-time simulation of multiplanar kinematics, GRFs, and musculotendon forces. System DOFs, range of motion, and speed support future testing of faster maneuvers, various joints, and kinetic chains of two connected joints.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121002-121002-12. doi:10.1115/1.4037591.

Anthropometric test devices (ATDs) such as the Hybrid III dummy have been widely used in automotive crash tests to evaluate the risks of injury at different body regions. In recent years, researchers have started using automotive ATDs to study the high-speed vertical loading response caused by underbody blast impacts. This study analyzed the Hybrid III dummy responses to short-duration, large magnitude vertical accelerations in a laboratory setup. Two unique test conditions were investigated using a horizontal sled system to simulate underbody blast loading conditions. The biomechanical responses in terms of pelvis acceleration, chest acceleration, lumbar spine force, head accelerations, and neck forces were measured. Subsequently, a series of finite element (FE) analyses were performed to simulate the physical tests. The correlation between the Hybrid III test and numerical model was evaluated using the correlation and analysis (cora) version 3.6.1. The score for the Wayne State University (WSU) FE model was 0.878 and 0.790 for loading conditions 1 and 2, respectively, in which 1.0 indicated a perfect correlation between the experiment and the simulated response. With repetitive vertical impacts, the Hybrid III dummy pelvis showed a significant increase in peak acceleration accompanied by a rupture of the pelvis foam and flesh. The revised WSU Hybrid III model indicated high stress concentrations at the same location, providing a possible explanation for the material failure in actual Hybrid III tests.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121003-121003-10. doi:10.1115/1.4037632.

Knowledge of anterior–posterior (A-P) tibial contact locations provides an objective assessment of the relative motion of the tibia on the femur following total knee arthroplasty (TKA), which can be used to compare the effects of different components, surgical techniques, and alignment goals on knee function in vivo. Both the lowest point method and the penetration method have been used to calculate A-P tibial contact locations using three-dimensional (3D) model to two-dimensional (2D) image registration. The primary objective of this study was to quantify errors in calculating the A-P tibial contact location using the lowest point and penetration methods because the errors in calculating the A-P tibial contact locations using these two methods are unknown. The A-P tibial contact locations were calculated with the two methods and simultaneously measured with a tibial force sensor in ten fresh-frozen cadaveric knee specimens with a TKA. Single-plane radiographs of the knee specimens were acquired at 0 deg, 30 deg, 60 deg, and 90 deg of flexion in neutrally, internally, and externally rotated orientations. While the radiographs were exposed, reference A-P tibial contact locations were simultaneously collected using the tibial force sensor to be compared to the calculated A-P tibial contact locations. The overall root-mean-squared-errors (RMSEs) in the A-P tibial contact location calculated with the lowest point method, the penetration method with penetration, and penetration method without penetration were 5.5 mm, 3.6 mm, and 8.9 mm, respectively. The overall RMSE was lowest for the penetration method with penetration, making it the superior method for calculating A-P tibial contact locations.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121004-121004-10. doi:10.1115/1.4037792.

Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver’s modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the “true” accuracy of a CFD solver.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121005-121005-13. doi:10.1115/1.4037550.

Viewed in renal physiology as a refined filtration device, the glomerulus filters large volumes of blood plasma while keeping proteins within blood circulation. Effects of macromolecule size and macromolecule hydrodynamic interaction with the nanostructure of the cellular layers of the glomerular capillary wall on the glomerular size selectivity are investigated through a mathematical simulation based on an ultrastructural model. The epithelial slit, a planar arrangement of fibers connecting the epithelial podocytes, is represented as a row of parallel cylinders with nonuniform spacing between adjacent fibers. The mean and standard deviation of gap half-width between its fibers are based on values recently reported from electron microscopy. The glomerular basement membrane (GBM) is represented as a fibrous medium containing fibers of two different sizes: the size of type IV collagens and that of glycosaminoglycans (GAGs). The endothelial cell layer is modeled as a layer full of fenestrae that are much larger than solute size and filled with GAGs. The calculated total sieving coefficient agrees well with the sieving coefficients of ficolls obtained from in vivo urinalysis in humans, whereas the computed glomerular hydraulic permeability also falls within the range estimated from human glomerular filtration rate (GFR). Our result indicates that the endothelial cell layer and GBM significantly contribute to solute and fluid restriction of the glomerular barrier, whereas, based on the structure of the epithelial slit obtained from electron microscopy, the contribution of the epithelial slit could be smaller than previously believed.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121006-121006-11. doi:10.1115/1.4037633.

The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121007-121007-10. doi:10.1115/1.4037592.

Predictive simulations of the mastication system would significantly improve our understanding of temporomandibular joint (TMJ) disorders and the planning of cranio-maxillofacial surgery procedures. Respective computational models must be validated by experimental data from in vivo characterization of the mastication system's mechanical response. The present pilot-study demonstrates the feasibility of a combined experimental and numerical procedure to validate a computer model of the masseter muscle. An experimental setup is proposed that provides a simultaneous bite force measurement and ultrasound-based visualization of muscle deformation. The direct comparison of the experimentally observed and numerically predicted muscle response demonstrates the predictive capabilities of such anatomically accurate biting models. Differences between molar and incisor biting are investigated; muscle deformation is recorded for three different bite forces in order to capture the effect of increasing muscle fiber recruitment. The three-dimensional (3D) muscle deformation at each bite position and force-level is approximatively reconstructed from ultrasound measurements in five distinct cross-sectional areas (four horizontal and one vertical cross section). The experimental work is accompanied by numerical simulations to validate the predictive capabilities of a constitutive muscle model previously formulated. An anatomy-based, fully 3D model of the masseter muscle is created from magnetic resonance images (MRI) of the same subject. The direct comparison of experimental and numerical results revealed good agreement for maximum bite forces and masseter deformations in both biting positions. The present work therefore presents a feasible in vivo measurement system to validate numerically predicted masseter muscle contractions during mastication.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121008-121008-10. doi:10.1115/1.4037856.

Continuing advances in the fabrication of scaffolds for tissue-engineered vascular grafts (TEVGs) are greatly expanding the scope of potential designs. Increasing recognition of the importance of local biomechanical cues for cell-mediated neotissue formation, neovessel growth, and subsequent remodeling is similarly influencing the design process. This study examines directly the potential effects of different combinations of key geometric and material properties of polymeric scaffolds on the initial mechanical state of an implanted graft into which cells are seeded or migrate. Toward this end, we developed a bilayered computational model that accounts for layer-specific thickness and stiffness as well as the potential to be residually stressed during fabrication or to swell during implantation. We found that, for realistic ranges of parameter values, the circumferential stress that would be presented to seeded or infiltrating cells is typically much lower than ideal, often by an order of magnitude. Indeed, accounting for layer-specific intrinsic swelling resulting from hydrophilicity or residual stresses not relieved via annealing revealed potentially large compressive stresses, which could lead to unintended cell phenotypes and associated maladaptive growth or, in extreme cases, graft failure. Metrics of global hemodynamics were also found to be inversely related to markers of a favorable local mechanobiological environment, suggesting a tradeoff in designs that seek mechanical homeostasis at a single scale. These findings highlight the importance of the initial mechanical state in tissue engineering scaffold design and the utility of computational modeling in reducing the experimental search space for future graft development and testing.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121009-121009-11. doi:10.1115/1.4037590.

Red blood cells (RBCs) are the most abundant cellular element suspended in blood. Together with the usual biconcave-shaped RBCs, i.e., discocytes, unusual-shaped RBCs are also observed under physiological and experimental conditions, e.g., stomatocytes and echinocytes. Stomatocytes and echinocytes are formed from discocytes and in addition can revert back to being discocytes; this shape change is known as the stomatocyte–discocyte–echinocyte (SDE) transformation. To-date, limited research has been conducted on the numerical prediction of the full SDE transformation. Spring-particle RBC (SP-RBC) models are commonly used to numerically predict RBC mechanics and rheology. However, these models are incapable of predicting the full SDE transformation because the typically employed bending model always leads to numerical instability with severely deformed shapes. In this work, an enhanced SP-RBC model is proposed in order to extend the capability of this model type and so that the full SDE transformation can be reproduced. This is achieved through the leveraging of an advanced bending model. Transformed vesicle and RBC shapes are predicted for a range of reduced volume and reduced membrane area difference (MAD), and very good agreement is obtained in the comparison of predicted shapes with experimental observations. Through these predictions, vesicle and SDE transformation phase diagrams are developed and, importantly, in the SDE case, shape boundaries are proposed for the first time relating RBC shape categories to RBC reduced volume and reduced MAD.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121010-121010-8. doi:10.1115/1.4037795.

The mechanisms underlying the spatial organization of self-assembled myofibrils in cardiac tissues remain incompletely understood. By modeling cells as elastic solids under active cytoskeletal contraction, we found a good correlation between the predicted maximal principal stress directions and the in vitro myofibril orientations in individual cardiomyocytes. This implies that actomyosin fibers tend to assemble along the maximal tensile stress (MTS) directions. By considering the dynamics of focal adhesion and myofibril formation in the model, we showed that different patterns of myofibril organizations in mature versus immature cardiomyocytes can be explained as the consequence of the different levels of force-dependent remodeling of focal adhesions. Further, we applied the mechanics model to cell pairs and showed that the myofibril organizations can be regulated by a combination of multiple factors including cell shape, cell–substrate adhesions, and cell–cell adhesions. This mechanics model can guide the rational design in cardiac tissue engineering where recapitulating in vivo myofibril organizations is crucial to the contractile function of the heart.

Topics: Adhesion , Fibers , Stress , Shapes
Commentary by Dr. Valentin Fuster
J Biomech Eng. 2017;139(12):121011-121011-6. doi:10.1115/1.4037948.

Neural recording and stimulation with high spatial and temporal resolution are highly desirable in the study of neurocommunication and diseases. Planar multiple microelectrode arrays (MEA) or quasi-three-dimensional (3D) MEA with fixed height have been proposed by many researchers and become commercially available. In this paper, we present the design, fabrication, and test of a novel true 3D multiple electrode array for brain slice stimulation and recording. This MEA is composed of 105 microelectrodes with 50 μm diameter and 125 μm center-to-center spacing integrated in a 1.2 × 1.2 mm2 area. This “true” 3D MEA allows us to precisely position the individual electrodes by piezoelectric-based actuators to penetrate the inactive tissue layer and to approach the active neurons so as to optimize the recording and stimulation of electrical field potential. The capability to stimulate nerve fibers and record postsynaptic field potentials was demonstrated in an experiment using mouse brain hippocampus slice.

Commentary by Dr. Valentin Fuster

Technical Brief

J Biomech Eng. 2017;139(12):124501-124501-6. doi:10.1115/1.4037794.

Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In