J Biomech Eng. 2001;123(3):205-211. doi:10.1115/1.1372320.

Blunt impact trauma to the patellofemoral joint during car accidents, sporting activities, and falls can produce a range of injuries to the knee joint, including gross bone fracture, soft tissue injury, and/or microinjuries to bone and soft tissue. Currently, the only well-established knee injury criterion applies to knee impacts suffered during car accidents. This criterion is based solely on the peak impact load delivered to seated cadavers having a single knee flexion angle. More recent studies, however, suggest that the injury potential, its location, and the characteristics of the damage are also a function of knee flexion angle and the stiffness of the impacting structure. For example, at low flexion angles, fractures of the distal patella are common with a rigid impact interface, while at high flexion angles splitting of the femoral condyles is more evident. Low stiffness impact surfaces have been previously shown to distribute impact loads over the anterior surface of the patella to help mitigate gross and microscopic injuries in the 90 deg flexed knee. The objective of the current study was to determine if a deformable impact interface would just as effectively mitigate gross and microscopic injuries to the knee at various flexion angles. Paired experiments were conducted on contralateral knees of 18 human cadavers at three flexion angles (60, 90, 120 deg). One knee was subjected to a fracture level impact experiment with a rigid impactor, and the opposite knee was impacted with a deformable interface (3.3 MPa crush strength honeycomb material) to the same load. This (deformable) impact interface was effective at mitigating gross bone fractures at approximately 5 kN at all flexion angles, but the frequency of split fracture of the femoral condyles may not have been significantly reduced at 120 deg flexion. On the other hand, this deformable interface was not effective in mitigating microscopic injuries observed for all knee flexion angles. These new data, in concert with the existing literature, suggest the chosen impact interface was not optimal for knee injury protection in that fracture and other minor injuries were still produced. For example, in 18 cadavers a total of 20 gross fractures and 20 subfracture injuries were produced with a rigid interface and 5 gross fractures and 21 subfracture injuries with the deformable interface selected for the current study. Additional studies will be needed to optimize the knee impact interface for protection against gross and microscopic injuries to the knee.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):212-217. doi:10.1115/1.1372699.

Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80–100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam–column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):218-226. doi:10.1115/1.1372321.

The human pelvis is susceptible to severe injury in vehicle side impacts owing to its close proximity to the intruding door and unnatural loading through the greater trochanter. Whereas fractures of the pelvic bones are diagnosed with routine radiographs (x-rays) and computerized tomography (CT scans), non-displaced damage to the soft tissues of pubic symphysis joints may go undetected. If present, trauma-induced joint laxity may cause pelvic instability, which has been associated with pelvic pain in non-traumatic cases. In this study, mechanical properties of cadaveric pubic symphysis joints from twelve normal and eight laterally impacted pelves were compared. Axial stiffness and creep responses of these isolated symphyses were measured in tension and compression (perpendicular to the joint). Bending stiffness was determined in four primary directions followed by a tension-to-failure test. Loading rate and direction correlated significantly (p<0.05) with stiffness and tensile strength of the unimpacted joints, more so than donor age or gender. The impacted joints had significantly lower stiffness in tension (p<0.04), compression (p<0.003), and posterior bending (p<0.03), and more creep under a compressive step load (p<0.008) than the unimpacted specimens. Tensile strength was reduced following impact, however, not significantly. We concluded that the symphysis joints from the impacted pelves had greater laxity, which may correlate with post-traumatic pelvic pain in some motor vehicle crash occupants.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1999;123(3):227-233. doi:10.1115/1.1372700.

A new tendon transfer technique is proposed for the reconstruction of the paralyzed shoulders secondary to Brachial Plexus Injury (BPI). In this tendon transfer, the long head of the biceps tendons is utilized as a bridging tendon graft. It is reflected at the exit of the bicipital groove, passed through the deltoid and directed to the trapezius. The technique is referred to here as the Reflected Long Head Bicepts (RLHB) technique. This study evaluated the effect of this tendon transfer on the anterior, posterior, and inferior stability of the reconstructed should using cadaveric specimens. It was shown that loading of the RLHB contributed significantly to anterior stability of the reconstructed shoulder for 90 deg elevation in the scapula plane. The mean displacement was reduced by 56 percent with RLHB loaded (p<0.01), by 56 percent with the rotator cuff loaded (p<0.005), and by 67 percent with both the RLHB and the rotator cuff loaded (p<0.004). For the post-operation conditions, variation of the directions of RLHB had no significant effect on joint displacement in response to anterior loading. The RLHB tendon also contributed to the posterior and inferior stability for the low and middle elevations in the plane of scapula. Two variations of the RLHB tendon transfer procedures, namely the “Sub-Deltoid” and the “Through-Deltoid” techniques, were introduced and studied. These two techniques did not seem to have significantly different effects on the displacement of the humeral head in response to both posterior and inferior loading. The results of this study seemed to support the clinical feasibility of this tendon transfer approach as far as the biomedical stability of the reconstruction is concerned.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):234-238. doi:10.1115/1.1375162.

The aim of this paper is to describe a new numerical–experimental method to determine the stiffness of a conceptual proximal femoral prototype. The methodology consists of the comparison of the numerical and experimental displacement distributions of the prosthesis loaded as a cantilever beam to validate a design concept: controlled stiffness prosthesis. The manufactured prototype used to test the applicability of the numerical–experimental procedure integrates a stiff metal core bonded to a composite material made of an epoxy resin reinforced with carbon-glass braided pre-forms. The prosthesis with an embedded controlled stiffness concept was obtained by varying the geometry of the core with the composite layer thickness.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2001;123(3):239-246. doi:10.1115/1.1372701.

Computer simulations of orthopaedic devices can be prohibitively time consuming, particularly when assessing multiple design and environmental factors. Chang et al. (1999) address these computational challenges using an efficient statistical predictor to optimize a flexible hip implant, defined by a midstem reduction, subjected to multiple environmental conditions. Here, we extend this methodology by: (1) explicitly considering constraint equations in the optimization formulation, (2) showing that the optimal design for one environmental distribution is robust to alternate distributions, and (3) illustrating a sensitivity analysis technique to determine influential design and environmental factors. A thin midstem diameter with a short stabilizing distal tip minimized the bone remodeling signal while maintaining satisfactory stability. Hip joint force orientation was more influential than the effect of the controllable design variables on bone remodeling and the cancellous bone elastic modulus had the most influence on relative motion, both results indicating the importance of including uncontrollable environmental factors. The optimal search indicated that only 16 to 22 computer simulations were necessary to predict the optimal design, a significant savings over traditional search techniques.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2001;123(3):247-255. doi:10.1115/1.1374201.

An in vitro model for neural trauma was characterized and validated. The model is based on a novel device that is capable of applying high strain rate, homogeneous, and equibiaxial deformation to neural cells in culture. The deformation waveform is fully arbitrary and controlled via closed-loop feedback. Intracellular calcium ([Ca2+]i) alterations were recorded in real time throughout the imposed strain with an epifluorescent microscopy system. Peak change in [Ca2+]i, recovery of [Ca2+]i, and percent responding NG108-15 cells were shown to be dependent on strain rate (1−1 to 10−1) and magnitude (0.1 to 0.3 Green’s Strain). These measures were also shown to depend significantly on the interaction between strain rate and magnitude. This model for neural trauma is a robust system that can be used to investigate the cellular tolerance and response to traumatic brain injury.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):256-263. doi:10.1115/1.1374202.

The anulus fibrosus (AF) of the intervertebral disc exhibits spatial variations in structure and composition that give rise to both anisotropy and inhomogeneity in its material behaviors in tension. In this study, the tensile moduli and Poisson’s ratios were measured in samples of human AF along circumferential, axial, and radial directions at inner and outer sites. There was evidence of significant inhomogeneity in the linear-region circumferential tensile modulus (17.4±14.3 MPa versus 5.6±4.7 MPa, outer versus inner sites) and the Poisson’s ratio ν21 (0.67±0.22 versus 1.6±0.7, outer versus inner), but not in the axial modulus (0.8±0.9 MPa) or the Poisson’s ratios ν12 (1.8±1.4) or ν13 (0.6±0.7). These properties were implemented in a linear anisotropic material model of the AF to determine a complete set of model properties and to predict material behaviors for the AF under idealized kinematic states. These predictions demonstrate that interactions between fiber populations in the multilamellae AF significantly contribute to the material behavior, suggesting that a model for the AF as concentric and physically isolated lamellae may not be appropriate.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2001;123(3):264-269. doi:10.1115/1.1372322.

We used a simple model of passive dynamic walking, with the addition of active powering on level ground, to study the preferred relationship between speed and step length in humans. We tested several hypothetical metabolic costs, with one component proportional to the mechanical work associated with pushing off with the stance leg at toe-off, and another component associated with several possible costs of forcing oscillations of the swing leg. For this second component, a cost based on the amount of force needed to oscillate the leg divided by the time duration of that force predicts the preferred speed–step length relationship much better than other costs, such as the amount of mechanical work done in swinging the leg. The cost of force/time models the need to recruit fast muscle fibers for large forces at short durations. The actual mechanical work performed by muscles on the swing leg appears to be of relatively less importance, although it appears to be minimized by the use of short bursts of muscle activity in near-isometric conditions. The combined minimization of toe-off mechanical work and force divided by time predicts the preferred speed–step length relationship.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):270-276. doi:10.1115/1.1372323.

A pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1—0:100, Case 2—25:75, Case 3—50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences (p<0.05) for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences (p<0.05) in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2001;123(3):277-283. doi:10.1115/1.1374203.

The formation of distal anastomotic intimal hyperplasia (IH), one common mode of bypass graft failure, has been shown to occur in the areas of disturbed flow particular to this site. The nature of the flow in the segment of artery proximal to the distal anastomosis varies from case to case depending on the clinical situation presented. A partial stenosis of a bypassed arterial segment may allow residual prograde flow through the proximal artery entering the distal anastomosis of the graft. A complete stenosis may allow for zero flow in the proximal artery segment or retrograde flow due to the presence of small collateral vessels upstream. Although a number of investigations on the hemodynamics at the distal anastomosis of an end-to-side bypass graft have been conducted, there has not been a uniform treatment of the proximal artery flow condition. As a result, direct comparison of results from study to study may not be appropriate. The purpose of this work was to perform a three-dimensional computational investigation to study the effect of the proximal artery flow condition (i.e., prograde, zero, and retrograde flow) on the hemodynamics at the distal end-to-side anastomosis. We used the finite volume method to solve the full Navier–Stokes equations for steady flow through an idealized geometry of the distal anastomosis. We calculated the flow field and local wall shear stress (WSS) and WSS gradient (WSSG) everywhere in the domain. We also calculated the severity parameter (SP), a quantification of hemodynamic variation, at the anastomosis. Our model showed a marked difference in both the magnitude and spatial distribution of WSS and WSSG. For example, the maximum WSS magnitude on the floor of the artery proximal to the anastomosis for the prograde and zero flow cases is 1.8 and 3.9 dynes/cm2, respectively, while it is increased to 10.3 dynes/cm2 in the retrograde flow case. Similarly, the maximum value of WSSG magnitude on the floor of the artery proximal to the anastomosis for the prograde flow case is 4.9 dynes/cm3, while it is increased to 13.6 and 24.2 dynes/cm3, respectively, in the zero and retrograde flow cases. The value of SP is highest for the retrograde flow case (13.7 dynes/cm3) and 8.1 and 12.1 percent lower than this for the prograde (12.6 dynes/cm3) and zero (12.0 dynes/cm3) flow cases, respectively. Our model results suggest that the flow condition in the proximal artery is an important determinant of the hemodynamics at the distal anastomosis of end-to-side vascular bypass grafts. Because hemodynamic forces affect the response of vascular endo- thelial cells, the flow situation in the proximal artery may affect IH formation and, therefore, long-term graft patency. Since surgeons have some control over the flow condition in the proximal artery, results from this study could help determine which flow condition is clinically optimal.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2000;123(3):284-292. doi:10.1115/1.1372702.

Vascular accesses (VA) for hemodialysis are usually created by native arteriovenous fistulas (AVF) or synthetic grafts. Maintaining patency of VA continues to be a major problem for patients with end-stage renal disease, since in these vessels thrombosis and intimal hyperplasia often occur. These lesions are frequently associated with disturbed flow that develops near bifurcations or sharp curvatures. We explored the possibility of investigating blood flow dynamics in a patient-specific model of end-to-end native AVF using computational fluid dynamics (CFD). Using digital subtraction angiographies of an AVF, we generated a three-dimensional meshwork for numerical analysis of blood flow. As input condition, a time-dependent blood waveform in the radial artery was derived from centerline velocity obtained during echo-color-Doppler ultrasound examination. The finite element solution was calculated using a fluid-dynamic software package. In the straight, afferent side of the radial artery wall shear stress ranged between 20 and 36 dynes/cm2 , while on the inner surface of the bending zone it increased up to 350 dynes/cm2 . On the venous side, proximal to the anastomosis, wall shear stress was oscillating between negative and positive values (from −12 dynes/cm2 to 112 dynes/cm2 ), while distal from the anastomosis, the wall shear stress returned within the physiologic range, ranging from 8 to 22 dynes/cm2 . Areas of the vessel wall with very high shear stress gradient were identified on the bending zone of the radial artery and on the venous side, after the arteriovenous shunt. Secondary blood flows were also observed in these regions. CFD gave a detailed description of blood flow field and showed that this approach can be used for patient-specific analysis of blood vessels, to understand better the role of local hemodynamic conditions in the development of vascular lesions.

Commentary by Dr. Valentin Fuster


J Biomech Eng. 2000;123(3):293-295. doi:10.1115/1.1378576.

Various impact models have been used to study the injury mechanics of blunt trauma to diarthrodial joints. The current study was designed to study the relationship between impactor energy and mass on impact biomechanics and injury modalities for a specific test condition and protocol. A total of 48 isolated canine knees were impacted once with one of three free flight inertial masses (0.7, 1.5, or 4.8 kg) at one of three energy levels (2, 11, 22 J). Joint impact biomechanics (peak load, loading rate, contact area) generally increased with increasing energy. Injuries were typically more frequent and more severe with the larger mass at each energy level. Histological analyses of the patellae revealed cartilage injuries at low energy with deep injuries in underlying bone at higher energies.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In