The first stress–strain measurements on embryonic cardiovascular tissue are described here, obtained from cyclic uniaxial loading of the primitive Ventricle. An excised ventricular segment from Hamburger/Hamilton stage-16 or stage-18 chicks (2-1/2 and 3 days of a 21-day incubation period) was mounted longitudinally between two small wires in oxygenated Krebs–Henseleit cardioplegia solution. One wire was attached to an ultrasensitive force transducer and the other to a Huxley micromanipulator controlled by remote motor drive. A real-time video tracking system calculated three myocardial surface strains based on the positions of three surface markers while the heart was deformed in a triangular wave pattern. Force transducer output was filtered, digitally sampled, and stored with strains and time. Results were plotted as strain (longitudinal, circumferential, shear, and principal) versus time, stress versus time, and stress versus longitudinal strain. The stress–strain curves were nonlinear, even at low strain levels. The hysteresis loops were large; mean hysteresis energy as a proportion of total cycle stored strain energy was 36 percent (stage 16) and 41 percent (stage 18). We created a finite element model of the ventricle and fit the model behavior to the experimental behavior to determine parameters for a stage-18 pseudoelastic strain-energy function of exponential form. The calculated exponential parameter is significantly lower than that found in corresponding uniaxial studies of mature myocardium, possibly indicating the lower fiber content of the immature tissue. The results of this study are the first step in characterizing material properties for comparisons with later developmental stages and with impaired and altered myocardium. The long-term goal is to aid in identifying the biomechanical factors regulating growth and morphogenesis.

1.
Clark
E. B.
,
Hu
N.
,
Dummett
J. L.
,
Vandekieft
G. K.
,
Olson
C.
, and
Tomanek
R.
,
1986
, “
Ventricular Function and Morphology in Chick Embryo From Stages 18 to 29
,”
Am. J. Physiol.
, Vol.
250
, pp.
407
413
.
2.
Clark
E. B.
,
Hu
N.
,
Turner
D. R.
,
Litter
J. E.
, and
Hansen
J.
,
1991
, “
Effect of Chronic Verapamil Treatment on Ventricular Function and Growth in Chick Embryos
,”
Am. J. Physiol.
, Vol.
261
(Heart Circ. Physio. 30), pp.
166
171
.
3.
Demer
L. L.
, and
Yin
F. C. P.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol. (Brit)
, Vol.
339
, pp.
615
630
.
4.
Demiray
H.
,
1967
, “
Stresses in Ventricular Wall
,”
ASME Journal of Applied Mechanics
, Vol.
43
, pp.
194
197
.
5.
Fung, Y. C., 1972, “Stress–Strain-History Relations of Soft Tissues in Simple Elongation,” in: Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M., eds., Prentice Hall, New York, pp. 181–208.
6.
Hamburger
V.
, and
Hamilton
H. L.
,
1951
, “
A Series of Normal Stages in the Development of the Chick Embryo
,”
Journal of Morphology
, Vol.
88
, pp.
49
92
.
7.
Horowitz
A.
,
Lanir
Y.
,
Yin
F. C. P.
,
Perl
M.
,
Sheinman
I.
, and
Strumph
R. K.
,
1988
, “
Structural Three-Dimensional Constitutive Law for the Passive Myocardium
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, pp.
200
207
.
8.
Humphrey
J. D.
, and
Yin
F. C. P.
,
1987
, “
On Constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
, pp.
298
304
.
9.
Humphrey
J. D.
,
Strumph
R. K.
, and
Yin
F. C. P.
,
1990
a, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
333
339
.
10.
Humphrey
J. D.
,
Strumph
R. K.
, and
Yin
F. C. P.
,
1990
b, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
340
346
.
11.
Keller
B. B.
,
Hu
N.
,
Serrino
P. J.
, and
Clark
E. B.
,
1991
, “
Vertricular Pressure-Area Loop Characteristics in the Stage 16-24 Chick Embryo
,”
Circ. Res.
, Vol.
68
, pp.
226
231
.
12.
Kitabatake
A.
, and
Suga
H.
,
1978
, “
Diastolic Stress-Strain Relation of Nonexcised Blood-Perfused Canine Papillary Muscle
,”
Am. J. Physiology
, Vol.
234
, pp.
416
20
.
13.
Lacktis, J. W., and Manasek, F. J., 1978, “An Analysis of Deformation During a Normal Morphogenic Event,” in: Morphogenesis and Malformation of the Cardiovascular System, Rosenquist, G. C., and Bergsma, D., eds., Alan R. Liss, New York, pp. 205–227.
14.
Mirsky
I.
,
1976
, “
Assessment of Passive Elastic Stiffness of Cardiac Muscle: Mathematical Concepts, Physiologic and Clinic Considerations, Directions of Future Research
,”
Progress in Cardiovascular Diseases
, Vol.
18
, pp.
277
308
.
15.
Nassar
R.
,
Reedy
M. C.
, and
Anderson
P. A. W.
,
1987
, “
Developmental Changes in the Ultrastructure and Sarcomere Shortening of the Isolated Rabbit Ventricular Myocyte
,”
Circ. Res.
, Vol.
61
, pp.
465
483
.
16.
Pinto
J. G.
, and
Fung
Y. C.
,
1973
, “
Mechanical Properties of the Heart Muscle in the Passive State
,”
J. Biomechanics
, Vol.
6
, pp.
597
616
.
17.
Rockman
H. A.
,
Ross
R. S.
,
Harris
A. N.
,
Knowlton
K. U.
,
Steinhelper
M. E.
,
Field
L. J.
,
Ross
J.
, and
Chien
K. R.
,
1991
, “
Segregation of Atrial-Specific and Inducible Expression of an Atrial Natriuretic Factor Transgene in an In Vivo Murine Model of Cardiac Hypertrophy
,”
Proc. Natl. Acad. Sci. USA
, Vol.
88
, pp.
8277
8281
.
18.
Shiraishi
I.
,
Takamatsu
T.
,
Minamikawa
T.
, and
Fujita
S.
,
1992
, “
3-D Observation of Actin Filaments During Cardiac Myofibrinogenesis in Chick Embryo Using a Confocal Laser Scanning Microscope
,”
Anat. Embryol.
, Vol.
185
, pp.
401
408
.
19.
Srinivasan, R. K., Perruchio, R. P., Taber, L. A., and Clark, E. B., 1994a, “Finite Element Analysis of an Anisotropic Incompressible Pseudoelastic Model for the Active Stage 16 Embryonic Chick Heart,” Proc. of the International Mechanical Engineering Congress and Exposition, Chicago, IL.
20.
Srinivasan
R. K.
, and
Perruchio
R. P.
,
1994
, “
Finite Element Analysis of Anisotropic Nonlinear Incompressible Elastic Solids by a Mixed Model
,”
Int. Journal for Numerical Methods in Engineering
, Vol.
37
, pp.
3075
3092
.
21.
Taber
L. A.
,
Hu
N.
,
Pexieder
T.
,
Clark
E. B.
, and
Keller
B. B.
,
1993
, “
Residual Strain in the Ventricle of the Stage 16-24 Chick Embryo
,”
Circ. Res.
, Vol.
72
, pp.
455
462
.
22.
Taber
L. A.
,
Keller
B. B.
, and
Clark
E. B.
,
1992
, “
Cardiac Mechanics in the Stage-16 Chick Embryo
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
, pp.
427
434
.
23.
Waldman
L. K.
,
Fung
Y. C.
, and
Covell
J. W.
,
1985
, “
Transmural Myocardial Deformation in the Canine Left Ventricle. Normal In Vivo Three-Dimensional Finite Strains
,”
Circ. Res.
, Vol.
57
, pp.
152
163
.
24.
Yang
M.
,
Taber
L. A.
, and
Clark
E. B.
,
1994
, “
A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
116
, pp.
213
223
.
25.
Yin
F. C. P.
,
Chew
P. H.
, and
Zeger
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress–Strain Data
,”
J. Biomechanics
, Vol.
19
, pp.
27
37
.
26.
Yin
F. C. P.
,
Strumpf
R. K.
,
Chew
P. H.
, and
Zeger
S. L.
,
1987
, “
Quantification of the Mechanical Properties of Nonconducting Canine Myocardium Under Simultaneous Biaxial Loading
,”
J. Biomechanics
, Vol.
20
, pp.
577
589
.
This content is only available via PDF.
You do not currently have access to this content.