0
Research Papers

Fluid–Structure Interaction and In Vitro Analysis of a Real Bileaflet Mitral Prosthetic Valve to Gain Insight Into Doppler-Silent Thrombosis

[+] Author and Article Information
Annalisa Dimasi

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Via Golgi 39,
Milan 20133, Italy

Daniela Piloni, Emiliano Votta

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Via Golgi 39,
Milan 20133, Italy

Laura Spreafico, Riccardo Vismara, Gianfranco Beniamino Fiore, Masoud Meskin

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Via Golgi 39,
Milan 20133, Italy

Laura Fusini, Manuela Muratori, Piero Montorsi, Mauro Pepi

Centro Cardiologico Monzino IRCCS,
Via Carlo Parea 4,
Milan 20138, Italy

Alberto Redaelli

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Via Golgi 39,
Milan 20133, Italy
e-mail: alberto.redaelli@polimi.it

1Corresponding author.

Manuscript received January 31, 2018; final manuscript received April 24, 2019; published online July 11, 2019. Assoc. Editor: Giuseppe Vairo.

J Biomech Eng 141(10), 101002 (Jul 11, 2019) (9 pages) Paper No: BIO-18-1058; doi: 10.1115/1.4043664 History: Received January 31, 2018; Revised April 24, 2019

Prosthetic valve thrombosis (PVT) is a serious complication affecting prosthetic heart valves. The transvalvular mean pressure gradient (MPG) derived by Doppler echocardiography is a crucial index to diagnose PVT but may result in false negatives mainly in case of bileaflet mechanical valves (BMVs) in mitral position. This may happen because MPG estimation relies on simplifying assumptions on the transvalvular fluid dynamics or because Doppler examination is manual and operator dependent. A deeper understanding of these issues may allow for improving PVT diagnosis and management. To this aim, we used in vitro and fluid–structure interaction (FSI) modeling to simulate the function of a real mitral BMV in different configurations: normally functioning and stenotic with symmetric and completely asymmetric leaflet opening, respectively. In each condition, the MPG was measured in vitro, computed directly from FSI simulations and derived from the corresponding velocity field through a Doppler-like postprocessing approach. Following verification versus in vitro data, MPG computational data were analyzed to test their dependency on the severity of fluid-dynamic derangements and on the measurement site. Computed MPG clearly discriminated between normally functioning and stenotic configurations. They did not depend markedly on the site of measurement, yet differences below 3 mmHg were found between MPG values at the central and lateral orifices of the BMV. This evidence suggests a mild uncertainty of the Doppler-based evaluation of the MPG due to probe positioning, which yet may lead to false negatives when analyzing subjects with almost normal MPG.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Caceres-Loriga, F. M. , Pérez-Lopez, H. , Santos-Gracia, J. , and Morlans-Hernandez, K. , 2006, “ Prosthetic Heart Valve Thrombosis: Pathogenesis, Diagnosis and Management,” Int. J. Cardiol., 110, pp. 1–6. [CrossRef] [PubMed]
Roudaut, R. , Serri, K. , and Lafitte, S. , 2007, “ Thrombosis of Prosthetic Heart Valves: Diagnosis and Therapeutic Considerations,” Heart, 93(1), pp. 137–142. [CrossRef] [PubMed]
Zoghbi, W. A. , Chambers, J. B. , Dumesnil, J. G. , Foster, E. , Gottdiener, J. S. , Grayburn, P. A. , Khandheria, B. K. , Levine, R. A. , Marx, G. R. , Miller, F. A. , Nakatani, S. , Quinones, M. A. , Rakowski, H. , Rodriguez, L. L. , Swaminathan, M. , Waggoner, A. D. , Weissman, N. J. , and Zabalgoitia, M. , 2009, “ Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound. A Report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, Developed in Conjunction,” J. Am. Soc. Echocardiography, 22(9), pp. 975–1014. [CrossRef]
Montorsi, P. , Cavoretto, D. , Alimento, M. , Muratori, M. , and Pepi, M. , 2003, “ Prosthetic Mitral Valve Thrombosis: Can Fluoroscopy Predict the Efficacy of Thrombolytic Treatment?,” Circulation, 108(10), pp. II79–II84. [PubMed]
Muratori, M. , Montorsi, P. , Teruzzi, G. , Celeste, F. , Doria, E. , Alamanni, F. , and Pepi, M. , 2006, “ Feasibility and Diagnostic Accuracy of Quantitative Assessment of Mechanical Prostheses Leaflet Motion by Transthoracic and Transesophageal Echocardiography in Suspected Prosthetic Valve Dysfunction,” Am. J. Cardiol., 97(1), pp. 94–100. [CrossRef] [PubMed]
Cheng, R. , Lai, Y. G. , and Chandran, K. B. , 2004, “ Three-Dimensional Fluid-Structural Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics,” Ann. Biomed. Eng., 32(11), pp. 1471–1483. [CrossRef] [PubMed]
Nobili, M. , Morbiducci, U. , Ponzini, R. , Del Gaudio, C. , Balducci, A. , Grigioni, M. , Maria Montevecchi, F. , and Redaelli, A. , 2008, “ Numerical Simulation of the Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid-Structure Interaction Approach,” J. Biomech., 41(11), pp. 2539–2550. [CrossRef] [PubMed]
Nobili, M. , Passoni, G. , and Redaelli, A. , 2007, “ Two Fluid-Structure Approaches for 3D Simulation of St. Jude Medical Bileaflet Valve Opening,” J. Appl. Biomater. Biomech., 5(1), pp. 49–59. https://journals.sagepub.com/doi/abs/10.1177/228080000700500107 [PubMed]
Redaelli, A. , Bothorel, H. , Votta, E. , Soncini, M. , Morbiducci, U. , Del Gaudio, C. , Balducci, A. , and Grigioni, M. , 2004, “ 3-D Simulation of the St. Jude Medical Bileaflet Valve Opening Process: Fluid-Structure Interaction Study and Experimental Validation,” J. Heart Valve Dis., 13(5), pp. 804–813. https://www.ncbi.nlm.nih.gov/pubmed/15473484 [PubMed]
Souli, M. , Ouahsine, A. , and Lewin, L. , 2000, “ ALE Formulation for Fluid-Structure Interaction Problems,” Comput. Methods Appl. Mech. Eng., 190(5–7), pp. 659–675. [CrossRef]
Ge, L. , and Sotiropoulos, F. , 2007, “ A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries,” J. Comput. Phys., 225(2), pp. 1782–1809. [CrossRef] [PubMed]
Gilmanov, A. , and Sotiropoulos, F. , 2005, “ A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies,” J. Comput. Phys., 207(2), pp. 457–492. [CrossRef]
Peskin, C. S. , 1972, “ Flow Patterns Around Heart Valves: A Numerical Method,” J. Comput. Phys., 10(2), pp. 252–271. [CrossRef]
Annerel, S. , Claessens, T. , Degroote, J. , Segers, P. , and Vierendeels, J. , 2014, “ Validation of a Numerical FSI Simulation of an Aortic BMHV by In Vitro PIV Experiments,” Med. Eng. Phys., 36(8), pp. 1014–1023. [CrossRef] [PubMed]
Annerel, S. , Degroote, J. , Claessens, T. , Segers, P. , Verdonck, P. , and Vierendeels, J. , 2012, “ The Upstream Boundary Condition Influences the Leaflet Opening Dynamics in the Numerical FSI Simulation of an Aortic BMHV,” Int. J. Numer. Method. Biomed. Eng., 28(6–7), pp. 745–760. [CrossRef] [PubMed]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2010, “ High-Resolution Fluid-Structure Interaction Simulations of Flow Through a bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta,” Ann. Biomed. Eng., 38(2), pp. 326–344. [CrossRef] [PubMed]
De Beule, M. , Mortier, P. , Carlier, S. G. , Verhegghe, B. , Van Impe, R. , and Verdonck, P. , 2008, “ Realistic Finite Element-Based Stent Design: The Impact of Balloon Folding,” J. Biomech., 41(2), pp. 383–389. [CrossRef] [PubMed]
Su, B. , Kabinejadian, F. , Phang, H. Q. , Kumar, G. P. , Cui, F. , Kim, S. , Tan, R. S. , Hon, J. K. F. , Allen, J. C. , Leo, H. L. , and Zhong, L. , 2015, “ Numerical Modeling of Intraventricular Flow During Diastole After Implantation of BMHV,” PLoS One, 10(5), p. e0126315. [CrossRef] [PubMed]
Votta, E. , Le, T. B. , Stevanella, M. , Fusini, L. , Caiani, E. G. , Redaelli, A. , and Sotiropoulos, F. , 2013, “ Toward Patient-Specific Simulations of Cardiac Valves: State-of-the-Art and Future Directions,” J. Biomech., 46(2), pp. 217–228. [CrossRef] [PubMed]
Vismara, R. , Pavesi, A. , Votta, E. , Taramasso, M. , Maisano, F. , and Fiore, G. B. , 2011, “ A Pulsatile Simulator for the In Vitro Analysis of the Mitral Valve With Tri-Axial Papillary Muscle Displacement,” Int. J. Artif. Organs, 34(4), pp. 383–391. [CrossRef] [PubMed]
Quaini, A. , Canic, S. , Glowinski, R. , Igo, S. , Hartley, C. J. , Zoghbi, W. , and Little, S. , 2012, “ Validation of a 3D Computational Fluid-Structure Interaction Model Simulating Flow Through an Elastic Aperture,” J. Biomech., 45(2), pp. 310–318. [CrossRef] [PubMed]
ANSYS, 2012, “ANSYS FLUENT User's Guide Release 14.5,” ANSYS, Canonsburg, PA.
Yoganathan, A. P. , Chandran, K. B. , and Sotiropoulos, F. , 2005, “ Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions,” Ann. Biomed. Eng., 33(12), pp. 1689–1694. [CrossRef] [PubMed]
Montorsi, P. , Cavoretto, D. , Parolari, A. , Muratori, M. , Alimento, M. , and Pepi, M. , 2002, “ Diagnosing Prosthetic Mitral Valve Thrombosis and the Effect of the Type of Prosthesis,” Am. J. Cardiol., 90(1), pp. 73–76. [CrossRef] [PubMed]
Erdil, N. , Cetin, L. , Demirkilic, U. , Tatar, H. , and Uzun, M. , 2003, “ Experience of the Small Size (25 mm) Sorin Bicarbon Bileaflet Prosthetic Valve in Patients With Small Mitral Annuli,” J. Card. Surg., 18(6), pp. 532–538. [CrossRef] [PubMed]
Horstkotte, D. , and Burckhardt, D. , 1995, “ Prosthetic Valve Thormbosis,” J. Heart Valve Dis., 4(2), pp. 141–153. [PubMed]
Montorsi, P. , De Bernardi, F. , Muratori, M. , Cavoretto, D. , and Pepi, M. , 2000, “ Role of Cine-Fluoroscopy, Transthoracic, and Transesophageal Echocardiography in Patients With Suspected Prosthetic Heart Valve Thrombosis,” Am. J. Cardiol., 85(1), pp. 58–64. [CrossRef] [PubMed]
Evin, M. , Guivier-Curien, C. , Pibarot, P. , Kadem, L. , and Rieu, R. , 2016, “ Are the Current Doppler Echocardiography Criteria Able to Discriminate Mitral Bileaflet Mechanical Heart Valve Malfunction? An In Vivo Study,” Artif. Organs, 40(5), pp. E52–E60. [CrossRef] [PubMed]
Annerel, S. , Degroote, J. , Claessens, T. , Dahl, S. K. , Skallerud, B. , Hellevik, L. R. , van Ransbeeck, P. , Segers, P. , Verdonck, P. , and Vierendeels, J. , 2012, “ A Fast Strong Coupling Algorithm for the Partitioned Fluid-Structure Interaction Simulation of BMHVs,” Comput. Methods Biomech. Biomed. Eng., 15(12), pp. 1281–1312. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Top panel: Sorin bicarbon fitline size 25 mm as seen in a 3D view (a), from the ventricle (b), and from two lateral views (c) and (d). Bottom panel: sketch of the three valve configurations considered in the study: (e) well-functioning valve (N60), (f) dysfunctional symmetric stenosis (SS35), and (g) dysfunctional asymmetric stenosis (SA57). For each configuration, the opening angle of the leaflet is shown with respect to the closed configuration (dashed line).

Grahic Jump Location
Fig. 2

Schematic of the experimental setup composed by the systemic impedance simulator (S), the reservoir (R), the programable pump (P), and the test bench (T). Modified from the paper by Vismara et al. [20].

Grahic Jump Location
Fig. 3

Echo-Doppler signal used to derive the time-dependent flow rate used as inlet boundary condition in the FSI simulations

Grahic Jump Location
Fig. 4

3D model of the test bench for the FSI analyses; the different components are indicated

Grahic Jump Location
Fig. 5

Location of the central (C) and lateral (L) scanning volumes (SVs) used to process fluid dynamic data according to the Doppler-like approach in the three models

Grahic Jump Location
Fig. 6

Contours of velocity magnitude (v) obtained during the opening phase (ac) and at peak diastolic flow (d) for the N60 configuration. The 3D geometry of the leaflets is shown.

Grahic Jump Location
Fig. 7

Right panel. Plots of axial velocity profiles along a line crossing the valves as shown in the left panel. Results for the three configurations of valves are reported: (a) N60, (b) SS35, and (c) SA57.

Grahic Jump Location
Fig. 8

Contours of velocity magnitude (v) at peak diastolic flow for the SS35 (left) and SA57 (right) configurations. The 3D geometry of the leaflets is shown. The vertical white bars represent the structural elements used to limit valve rotation in the experimental in vitro tests.

Grahic Jump Location
Fig. 9

Doppler histogram of the SA57 configuration obtained from the numerical simulations

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In