0
Research Papers

Changes in Shear Modulus of the Lumbar Multifidus Muscle During Different Body Positions

[+] Author and Article Information
Seyedali Sadeghi

Department of Mechanical and
Nuclear Engineering,
College of Engineering,
The Pennsylvania State University,
State College, PA 16802
e-mail: sus653@psu.edu

Kevin Quinlan

Department of Statistics,
The Pennsylvania State University,
State College, PA 16802
e-mail: krq103@psu.edu

Kirsten E. Eilertson

Department of Statistics,
The Pennsylvania State University,
State College, PA 16802
e-mail: eilertson@psu.edu

Gregory G. Billy

The Milton S. Hershey Medical Center,
Department of Surgery,
Hershey, PA 17033
e-mail: gbilly@pennstatehealth.psu.edu

Jesse Bible

The Milton S. Hershey Medical Center,
Department of Surgery,
Hershey, PA 17033
e-mail: jbible@hmc.psu.edu

Jaclyn Megan Sions

Department of Physical Therapy,
University of Delaware,
Newark, DE 19713
e-mail: megsions@udel.edu

Daniel H. Cortes

Department of Mechanical and
Nuclear Engineering,
College of Engineering,
The Pennsylvania State University,
State College, PA 16802;
Department of Biomedical Engineering,
College of Engineering,
The Pennsylvania State University,
State College, PA 16802
e-mail: dhc13@psu.edu

1Corresponding author.

Manuscript received July 2, 2018; final manuscript received March 28, 2019; published online May 6, 2019. Assoc. Editor: Eric A Kennedy.

J Biomech Eng 141(8), 081003 (May 06, 2019) (7 pages) Paper No: BIO-18-1307; doi: 10.1115/1.4043443 History: Received July 02, 2018; Revised March 28, 2019

Multifidus function is important for active stabilization of the spine, but it can be compromised in patients with chronic low back pain and other spine pathologies. Force production and strength of back muscles are often evaluated using isometric or isokinetic tests, which lack the ability to quantify multifidi contribution independent of the erector spinae and adjacent hip musculature. The objective of this study is to evaluate localized force production capability in multifidus muscle using ultrasound shear wave elastography (SWE) in healthy individuals. Three different body positions were considered: lying prone, sitting up, and sitting up with the right arm lifted. These positions were chosen to progressively increase multifidus contraction and to minimize body motion during measurements. Shear modulus was measured at the superficial and deeper layers of the multifidus. Repeatability and possible sources of error of the shear modulus measurements were analyzed. Multifidus shear modulus (median (interquartile range)) increased from prone, i.e., 16.15 (6.69) kPa, to sitting up, i.e., 27.28 (15.72) kPa, to sitting up with the right arm lifted position, i.e., 45.02 (25.27) kPa. Multifidi shear modulus in the deeper layer of the multifidi was lower than the superficial layer, suggesting lower muscle contraction. Intraclass correlation coefficients (ICCs) for evaluation of shear modulus by muscle layer were found to be excellent (ICC = 0.76–0.80). Results suggest that the proposed protocol could quantify local changes in spinal muscle function in healthy adults; further research in patients with spine pathology is warranted.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sions, J. M. , Velasco, T. O. , Teyhen, D. S. , and Hicks, G. E. , 2015, “ Reliability of Ultrasound Imaging for the Assessment of Lumbar Multifidi Thickness in Older Adults With Chronic Low Back Pain,” J. Geriatr. Phys. Ther., 38(1), pp. 33–39. [CrossRef] [PubMed]
Gibbon, K. C. , Debuse, D. , Hibbs, A. , and Caplan, N. , 2017, “ Reliability and Precision of Sonography of the Lumbar Multifidus and Transversus Abdominis During Dynamic Activities,” J. Ultrasound Med., 36(3), pp. 571–581. [CrossRef] [PubMed]
Goubert, D. , De Pauw, R. , Meeus, M. , Willems, T. , Cagnie, B. , Schouppe, S. , Van Oosterwijck, J. , Dhondt, E. , and Danneels, L. , 2017, “ Lumbar Muscle Structure and Function in Chronic Versus Recurrent Low Back Pain: A Cross-Sectional Study,” Spine J., 17(9), pp. 1285–1296. [CrossRef] [PubMed]
Sions, J. M. , Smith, A. C. , Hicks, G. E. , and Elliott, J. M. , 2016, “ Trunk Muscle Size and Composition Assessment in Older Adults With Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study,” Pain Med., 17(8), pp. 1436–1446. [CrossRef] [PubMed]
Rahmani, N. , Kiani, A. , Mohseni-Bandpei, M. A. , and Abdollahi, I. , 2018, “ Multifidus Muscle Size in Adolescents With and Without Back Pain Using Ultrasonography,” J. Bodywork Mov. Ther., 22(1), pp. 147–151. [CrossRef]
Hodges, P. W. , James, G. , Blomster, L. , Hall, L. , Schmid, A. , Shu, C. , Little, C. , and Melrose, J. , 2015, “ Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy,” Spine, 40(14), pp. 1057–1071. [CrossRef] [PubMed]
Storheim, K. , Berg, L. , Hellum, C. , Gjertsen, Ø. , Neckelmann, G. , Espeland, A. , and Keller, A. , 2017, “ Fat in the Lumbar Multifidus Muscles-Predictive Value and Change Following Disc Prosthesis Surgery and Multidisciplinary Rehabilitation in Patients With Chronic Low Back Pain and Degenerative Disc: 2-Year Follow-Up of a Randomized Trial,” BMC Musculoskeletal Disord., 18(1), p. 145. [CrossRef]
Addison, O. , Marcus, R. L. , LaStayo, P. C. , and Ryan, A. S. , 2014, “ Intermuscular Fat: A Review of the Consequences and Causes,” Int. J. Endocrinol., 2014, p. 309570. [CrossRef] [PubMed]
Ward, S. R. , Kim, C. W. , Eng, C. M. , Gottschalk , L. J., IV , Tomiya, A. , Garfin, S. R. , and Lieber, R. L. , 2009, “ Architectural Analysis and Intraoperative Measurements Demonstrate the Unique Design of the Multifidus Muscle for Lumbar Spine Stability,” J. Bone Jt. Surg., Am. Vol., 91(1), p. 176. [CrossRef]
Moseley, G. L. , Hodges, P. W. , and Gandevia, S. C. , 2002, “ Deep and Superficial Fibers of the Lumbar Multifidus Muscle Are Differentially Active During Voluntary Arm Movements,” Spine, 27(2), pp. E29–E36. [CrossRef] [PubMed]
Wallwork, T. L. , Hides, J. A. , and Stanton, W. R. , 2007, “ Intrarater and Interrater Reliability of Assessment of Lumbar Multifidus Muscle Thickness Using Rehabilitative Ultrasound Imaging,” J. Orthop. Sports Phys. Ther., 37(10), pp. 608–612. [CrossRef] [PubMed]
Stokes, M. , Hides, J. , Elliott, J. , Kiesel, K. , and Hodges, P. , 2007, “ Rehabilitative Ultrasound Imaging of the Posterior Paraspinal Muscles,” J. Orthop. Sports Phys. Ther., 37(10), pp. 581–595. [CrossRef] [PubMed]
Kiesel, K. B. , Uhl, T. L. , Underwood, F. B. , Rodd, D. W. , and Nitz, A. J. , 2007, “ Measurement of Lumbar Multifidus Muscle Contraction With Rehabilitative Ultrasound Imaging,” Man. Ther., 12(2), pp. 161–166. [CrossRef] [PubMed]
Whitehead, N. , Weerakkody, N. , Gregory, J. , Morgan, D. , and Proske, U. , 2001, “ Changes in Passive Tension of Muscle in Humans and Animals After Eccentric Exercise,” J. Physiol., 533(2), pp. 593–604. [CrossRef] [PubMed]
Todorov, P. T. , Nestorova, R. , and Batalov, A. , 2018, “ Diagnostic Value of Musculoskeletal Ultrasound in Patients With Low Back Pain–A Review of the Literature,” Med. Ultrasonography, 1(1), pp. 80–87. [CrossRef]
Shair, E. , Ahmad, S. , Marhaban, M. , Mohd Tamrin, S. , and Abdullah, A. , 2017, “ EMG Processing Based Measures of Fatigue Assessment During Manual Lifting,” BioMed Res. Int., 2017, p. 3937254. [CrossRef] [PubMed]
Smith, L. H. , and Hargrove, L. J. , 2013, “ Comparison of Surface and Intramuscular EMG Pattern Recognition for Simultaneous Wrist/Hand Motion Classification,” 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, July 3–7, pp. 4223–4226.
Palmeri, M. L. , and Nightingale, K. R. , 2011, “ Acoustic Radiation Force-Based Elasticity Imaging Methods,” Interface Focus, 1(4) pp. 553–564. [CrossRef] [PubMed]
Cortes, D. H. , Suydam, S. M. , Silbernagel, K. G. , Buchanan, T. S. , and Elliott, D. M. , 2015, “ Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons In Vivo,” Ultrasound Med. Biol., 41(6), pp. 1518–1529. [CrossRef] [PubMed]
Song, P. , Urban, M. W. , Manduca, A. , Zhao, H. , Greenleaf, J. F. , and Chen, S. , 2013, “ Comb-Push Ultrasound Shear Elastography (CUSE) With Various Ultrasound Push Beams,” IEEE Trans. Med. Imaging, 32(8), pp. 1435–1447. [CrossRef] [PubMed]
Nordez, A. , and Hug, F. , 2010, “ Muscle Shear Elastic Modulus Measured Using Supersonic Shear Imaging Is Highly Related to Muscle Activity Level,” J. Appl. Physiol., 108(5), pp. 1389–1394. [CrossRef] [PubMed]
Koo, T. K. , Guo, J.-Y. , Cohen, J. H. , and Parker, K. J. , 2013, “ Relationship Between Shear Elastic Modulus and Passive Muscle Force: An Ex-Vivo Study,” J. Biomech., 46(12), pp. 2053–2059. [CrossRef] [PubMed]
Bouillard, K. , Hug, F. , Guével, A. , and Nordez, A. , 2012, “ Shear Elastic Modulus Can Be Used to Estimate an Index of Individual Muscle Force During a Submaximal Isometric Fatiguing Contraction,” J. Appl. Physiol., 113(9), pp. 1353–1361. [CrossRef] [PubMed]
Hug, F. , Tucker, K. , Gennisson, J.-L. , Tanter, M. , and Nordez, A. , 2015, “ Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force,” Exercise Sport Sci. Rev., 43(3), pp. 125–133. [CrossRef]
Eby, S. F. , Song, P. , Chen, S. , Chen, Q. , Greenleaf, J. F. , and An, K.-N. , 2013, “ Validation of Shear Wave Elastography in Skeletal Muscle,” J. Biomech., 46(14), pp. 2381–2387. [CrossRef] [PubMed]
Gennisson, J.-L. , Deffieux, T. , Macé, E. , Montaldo, G. , Fink, M. , and Tanter, M. , 2010, “ Viscoelastic and Anisotropic Mechanical Properties of In Vivo Muscle Tissue Assessed by Supersonic Shear Imaging,” Ultrasound Med. Biol., 36(5), pp. 789–801. [CrossRef] [PubMed]
Creze, M. , Nyangoh Timoh, K. , Gagey, O. , Rocher, L. , Bellin, M. F. , and Soubeyrand, M. , 2017, “ Feasibility Assessment of Shear Wave Elastography to Lumbar Back Muscles: A Radioanatomic Study,” Clin. Anat., 30(6), pp. 774–780. [CrossRef] [PubMed]
Moreau, B. , Vergari, C. , Gad, H. , Sandoz, B. , Skalli, W. , and Laporte, S. , 2016, “ Non-Invasive Assessment of Human Multifidus Muscle Stiffness Using Ultrasound Shear Wave Elastography: A Feasibility Study,” Proc. Inst. Mech. Eng., Part H, 230(8), pp. 809–814. [CrossRef]
Bercoff, J. , Tanter, M. , and Fink, M. , 2004, “ Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 51(4), pp. 396–409. [CrossRef]
Lin, C.-Y. , Sadeghi, S. , Bader, D. A. , and Cortes, D. H. , 2017, “ Ultrasound Shear Wave Elastography of the Elbow Ulnar Collateral Ligament: Reliability Test and a Preliminary Case Study in a Baseball Pitcher,” ASME J. Eng. Sci. Med. Diagn. Ther., 1(1), p. 011004. [CrossRef]
Sadeghi, S. , Lin, C.-Y. , Bader, D. A. , and Cortes, D. H. , 2018, “ Evaluating Changes in Shear Modulus of Elbow Ulnar Collateral Ligament in Overhead Throwing Athletes Over the Course of a Competitive Season,” ASME J. Eng. Sci. Med. Diagn. Ther., 1(4), p. 041008. [CrossRef]
Sadeghi, S. , Johnson, M. , Bader, D. A. , and Cortes, D. H. , 2019, “ The Shear Modulus of Lower-Leg Muscles Correlates to Intramuscular Pressure,” J. Biomech., 83, pp. 190–196. [CrossRef] [PubMed]
Sadeghi, S. , Lin, C.-Y. , and Cortes, D. H. , 2019, “ Narrowband Shear Wave Generation Using Sinusoidally Modulated Acoustic Radiation Force,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 66(2), pp. 264–272. [CrossRef]
Bates, D. , Mächler, M. , Bolker, B. , and Walker, S. , 2015, “ Fitting Linear Mixed-Effects Models Using lme4,” J. Stat. Software, 67(1) (epub).
Dieterich, A. V. , Andrade, R. J. , Le Sant, G. , Falla, D. , Petzke, F. , Hug, F. , and Nordez, A. , 2017, “ Shear Wave Elastography Reveals Different Degrees of Passive and Active Stiffness of the Neck Extensor Muscles,” Eur. J. Appl. Physiol., 117(1), pp. 171–178. [CrossRef] [PubMed]
Walker, E. , and Nowacki, A. S. , 2011, “ Understanding Equivalence and Noninferiority Testing,” J. Gen. Int. Med., 26(2), pp. 192–196. [CrossRef]
Alis, D. , Durmaz, E. S. M. , Alis, C. , Erol, B. C. , Okur, B. , Kizilkilic, O. , and Mihmanli, I. , 2018, “ Shear Wave Elastography of the Lumbar Multifidus Muscle in Patients With Unilateral Lumbar Disk Herniation,” J. Ultrasound Med., 2018, pp. 1–9.
Chan, S.-T. , Fung, P.-K. , Ng, N.-Y. , Ngan, T.-L. , Chong, M.-Y. , Tang, C.-N. , He, J.-F. , and Zheng, Y.-P. , 2012, “ Dynamic Changes of Elasticity, Cross-Sectional Area, and Fat Infiltration of Multifidus at Different Postures in Men With Chronic Low Back Pain,” Spine J., 12(5), pp. 381–388. [CrossRef] [PubMed]
Shin, H. J. , Kim, M.-J. , Kim, H. Y. , Roh, Y. H. , and Lee, M.-J. , 2016, “ Comparison of Shear Wave Velocities on Ultrasound Elastography Between Different Machines, Transducers, and Acquisition Depths: A Phantom Study,” Eur. Radiol., 26(10), pp. 3361–3367. [CrossRef] [PubMed]
Dillman, J. R. , Chen, S. , Davenport, M. S. , Zhao, H. , Urban, M. W. , Song, P. , Watcharotone, K. , and Carson, P. L. , 2015, “ Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Ultrasound Systems,” Pediatr. Radiol., 45(3), pp. 376–385. [CrossRef] [PubMed]
Mulabecirovic, A. , Vesterhus, M. , Gilja, O. H. , and Havre, R. F. , 2016, “ In Vitro Comparison of Five Different Elastography Systems for Clinical Applications, Using Strain and Shear Wave Technology,” Ultrasound Med. Biol., 42(11), pp. 2572–2588. [CrossRef] [PubMed]
Miyamoto, N. , Hirata, K. , Kanehisa, H. , and Yoshitake, Y. , 2015, “ Validity of Measurement of Shear Modulus by Ultrasound Shear Wave Elastography in Human Pennate Muscle,” PLoS One, 10(4), p. e0124311. [CrossRef] [PubMed]
Koo, T. K. , and Hug, F. , 2015, “ Factors That Influence Muscle Shear Modulus During Passive Stretch,” J. Biomech., 48(12), pp. 3539–3542. [CrossRef] [PubMed]
Sions, J. M. , Velasco, T. O. , Teyhen, D. S. , and Hicks, G. E. , 2014, “ Ultrasound Imaging: Intraexaminer and Interexaminer Reliability for Multifidus Muscle Thickness Assessment in Adults Aged 60 to 85 Years Versus Younger Adults,” J. Orthop. Sports Phys. Ther., 44(6), pp. 425–434. [CrossRef] [PubMed]
Sions, J. M. , Teyhen, D. S. , and Hicks, G. E. , 2017, “ Criterion Validity of Ultrasound Imaging: Assessment of Multifidi Cross-Sectional Area in Older Adults With and Without Chronic Low Back Pain,” J. Geriatr. Phys. Ther., 40(2), pp. 74–79. [CrossRef] [PubMed]
Koppenhaver, S. L. , Hebert, J. J. , Fritz, J. M. , Parent, E. C. , Teyhen, D. S. , and Magel, J. S. , 2009, “ Reliability of Rehabilitative Ultrasound Imaging of the Transversus Abdominis and Lumbar Multifidus Muscles,” Arch. Phys. Med. Rehabil., 90(1), pp. 87–94. [CrossRef] [PubMed]
Teyhen, D. S. , 2007, “ Rehabilitative Ultrasound Imaging: The Roadmap Ahead,” J. Orthop. Sports Phys. Ther., 37(8), pp. 431–433. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Imaging with the transducer located lateral to the spinous processes and angled medially to view the left L4–5 facet joint at: (a) prone, (b) sitting up, and (c) sitting up with the right arm lifted in horizontal position

Grahic Jump Location
Fig. 2

Brightness mode ultrasound image of the left L4–5 multifidus

Grahic Jump Location
Fig. 3

Location of ROI for the elastography measurement of the L4–5 multifidus muscle at the entire multifidus thickness

Grahic Jump Location
Fig. 4

The shear modulus of the L4–5 multifidus (median, interquartile range) in three states: prone (left side), sitting up (left side), and sitting up with lifted right arm (LA) position for both the left and right sides

Grahic Jump Location
Fig. 5

Comparing the shear modulus (median, interquartile range) of the average of the superficial and deeper layer of the L4–5 multifidus with the shear modulus of the bigger ROI in three states: prone (left side), sitting up (left side), and sitting up with lifted right arm (LA) position for both the left and right sides

Grahic Jump Location
Fig. 6

Demonstration of the elastography measurement of the L4–5 multifidus muscle. The shear modulus levels of the tissues are represented in the shear modulus map: superficial and deeper layer of the multifidus (top image), the entire multifidus thickness (bottom image).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In