Research Papers

Muscle-Tendon Unit Parameter Estimation of a Hill-Type Musculoskeletal Model Based on Experimentally Obtained Subject-Specific Torque Profiles

[+] Author and Article Information
Frederik Heinen

Department of Health Science and Technology,
Sport Sciences,
Aalborg University,
Niels Jernes Vej 12,
Aalborg East 9220, Denmark

Søren N. Sørensen

Department of Materials and Production,
Aalborg University,
Fibigerstræde 16,
Aalborg East 9220, Denmark

Mark King

School of Sport,
Exercise and Health Sciences,
Loughborough University,
Loughborough, Leicestershire LE11 3TU, UK

Martin Lewis

School of Science and Technology,
Nottingham Trent University,
Nottingham, Nottinghamshire NG11 8NS, UK

Morten Enemark Lund

AnyBody Technology A/S,
Niels Jernes Vej 10,
Aalborg East 9220, Denmark

John Rasmussen

Department of Materials and Production,
Aalborg University,
Fibigerstræde 16,
Aalborg East 9220, Denmark

Mark de Zee

Department of Health Science and Technology,
Sport Sciences,
Aalborg University,
Niels Jernes Vej 12,
Aalborg East 9220, Denmark
e-mail: mdz@hst.aau.dk

1Corresponding author.

Manuscript received April 18, 2018; final manuscript received March 27, 2019; published online April 25, 2019. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 141(6), 061005 (Apr 25, 2019) (9 pages) Paper No: BIO-18-1190; doi: 10.1115/1.4043356 History: Received April 18, 2018; Revised March 27, 2019

The aim of this study was to generate a subject-specific musculoskeletal muscle model, based on isometric and isovelocity measurements of the whole lower extremity. A two-step optimization procedure is presented for optimizing the muscle-tendon parameters (MTPs) for isometric and isovelocity joint torque profiles. A significant improvement in the prediction of joint torque profiles for both the solely isometric and a combined isometric and dynamic method of optimization when compared to the standard scaling method of the AnyBody Modeling System (AMS) was observed. Depending on the specific purpose of the model, it may be worth considering whether the isometric-only would be sufficient, or the additional dynamic data are required for the combined approach.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Klein Horsman, M. D. , Koopman, H. F. J. M. , van der Helm, F. C. T. , Prosé, L. P. , and Veeger, H. E. J. , 2007, “ Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity,” Clin. Biomech., 22(2), pp. 239–247. [CrossRef]
Holmberg, L. J. , and Lund, A. M. , 2008, “ A Musculoskeletal Full-Body Simulation of Cross-Country Skiing,” J. Sports Eng. Technol., 222(1), pp. 11–22.
Wu, J. Z. , Chiou, S. S. , and Pan, C. S. , 2009, “ Analysis of Musculoskeletal Loadings in Lower Limbs During Stilts Walking in Occupational Activity,” Ann. Biomed. Eng., 37(6), pp. 1177–1189. [CrossRef] [PubMed]
Fregly, B. J. , Reinbolt, J. A. , Rooney, K. L. , Mitchell, K. H. , and Chmielewski, T. L. , 2007, “ Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation,” IEEE Trans. Biomed. Eng., 54(9), pp. 1687–1695. [CrossRef] [PubMed]
Rasmussen, J. , Holmberg, L. J. , Sørensen, K. , Kwan, M. M. S. , Andersen, M. S. , and de Zee, M. , 2012, “ Performance Optimization by Musculoskeletal Simulation,” Mov. Sport Sci., 1(75), pp. 73–83. [CrossRef]
Rasmussen, J. , Kwan, M. M. S. , Andersen, M. S. , and de Zee, M. , 2010, “ Analysis of Segment Energy Transfer Using Musculoskeletal Models in a High Speed Badminton Stroke,” Ninth International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Valencia, Spain, Feb. 24–27, pp. 2–10.
Hill, A. V. , 1938, “ The Heat of Shortening and Dynamics Constants of Muscles,” Proc. R. Soc. B, 126(843), pp. 136–195.
Zajac, F. E. , 1989, “ Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng., 17(4), pp. 359–411. [PubMed]
Redl, C. , Gfoehler, M. , and Pandy, M. G. , 2007, “ Sensitivity of Muscle Force Estimates to Variations in Muscle-Tendon Properties,” Hum. Mov. Sci., 26(2), pp. 306–319. [CrossRef] [PubMed]
Scovil, C. Y. , and Ronsky, J. L. , 2006, “ Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters,” J. Biomech., 39(11), pp. 2055–2063. [CrossRef] [PubMed]
Ward, S. R. , Smallwood, L. H. , and Lieber, R. L. , “ Scaling of Human Lower Extremity Muscle Architecture to Skeletal Dimensions,” 20th ISB Congress—ASB 29th Annual Meeting, Cleveland, OH, July 31–Aug. 5, p. 502.
Heinen, F. , Lund, M. E. , Rasmussen, J. , and de Zee, M. , 2016, “ Muscle–Tendon Unit Scaling Methods of Hill-Type Musculoskeletal Models: An Overview,” Proc. Inst. Mech. Eng., H, 230(10), pp. 976–984.
Winby, C. R. , Lloyd, D. G. , and Kirk, T. B. , 2008, “ Evaluation of Different Analytical Methods for Subject-Specific Scaling of Musculotendon Parameters,” J. Biomech., 41(8), pp. 1682–1688. [CrossRef] [PubMed]
Van Campen, A. , Pipeleers, G. , De Groote, F. , Jonkers, I. , and De Schutter, J. , 2014, “ A New Method for Estimating Subject-Specific Muscle-Tendon Parameters of the Knee Joint Actuators: A Simulation Study,” Int. J. Numer. Methods Biomed. Eng., 30(10), pp. 969–987. [CrossRef]
King, M. A. , and Yeadon, M. R. , 2002, “ Determining Subject Specific Torque Parameters for Use in a Torque Driven Simulation Model of Dynamic Jumping,” J. Appl. Biomech., 18(3), pp. 207–217. [CrossRef]
King, M. A. , Wilson, C. , and Yeadon, M. R. , 2006, “ Evaluation of a Torque-Driven Model of Jumping for Height,” J. Appl. Biomech., 22(4), pp. 264–274. [CrossRef] [PubMed]
Yeadon, M. R. , King, M. A. , and Wilson, C. , 2004, “ Modelling the Maximum Voluntary Joint Torque/Angular Velocity Relationship in Human Movement,” J. Biomech., 39(3), pp. 476–482. [CrossRef]
Lewis, M. G. C. , King, M. A. , Yeadon, M. R. , and Conceição, F. , 2012, “ Are Joint Torque Models Limited by an Assumption of Monoarticularity?,” J. Appl. Biomech., 28(5), pp. 520–529. [CrossRef] [PubMed]
Garner, B. A. , and Pandy, M. G. , 2003, “ Estimation of Musculotendon Properties in the Human Upper Limb,” Ann. Biomed. Eng., 31(2), pp. 207–220. [CrossRef] [PubMed]
Hasson, C. J. , and Caldwell, G. E. , 2012, “ Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles,” Ann. Biomed. Eng., 40(5), pp. 1088–1101. [CrossRef] [PubMed]
Wu, W. , Lee, P. V. S. , Bryant, A. L. , Galea, M. , and Ackland, D. C. , 2016, “ Subject-Specific Musculoskeletal Modeling in the Evaluation of Shoulder Muscle and Joint Function,” J. Biomech., 49(15), pp. 3626–3634. [CrossRef] [PubMed]
d'Souza, S. , Brückner, B. , Rasmussen, J. , and Schwirtz, A. , 2011, “ Development of Age and Gender Based Strength Scaled Equations for Use in Simulation Models,” First international symposium on Digital Human Modeling, Lyon, France, June 14–16.
Schwartz, F. P. , Bottaro, M. , Celes, R. S. , Brown, L. E. , and Nascimento, F. A. , 2010, “ The Influence of Velocity Overshoot Movement Artifact on Isokinetic Knee Extension Tests,” J. Sports Sci. Med., 9(1), pp. 140–146. [PubMed]
Carbone, V. , Fluit, R. , Pellikaan, P. , van der Krogt, M. M. , Janssen, D. , Damsgaard, M. , Vigneron, L. , Feilkas, T. , Koopman, H. F. J. M. , and Verdonschot, N. , 2015, “ TLEM 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity,” J. Biomech., 48(5), pp. 734–741. [CrossRef] [PubMed]
Daxner, T. , 1997, “ Simulation Von Beuge-und Streckbewegungen des Menschlichen Knies Mit DADS,” Ph.D. dissertation, Institut für Mechanik der Technischen Universität Wien, Vienna, Austria.
Otten, E. , 1985, “ Morphometrics and Force-Length Relations of Skeletal Muscles,” International Series on Biomechanics (ISB) Biomechanics IX-A, Winter et al., eds., Human Kinetics Publishers, Champaign, IL, pp. 27–32.
Gföhler, M. , Angeli, T. , Eberharter, T. , and Lugner, P. , 1999, “ Dynamic Simulation of Cycling Powered by Lower Extremity Muscles Activated by Functional Electrical Stimulation,” 12th International Biomechanics Seminar, Göteborg, Sweden, Sept. 10–11, pp. 101–122.
Kaufman, K. R. , An, K. , and Chao, E. Y. , 1989, “ Incorporation of Muscle Architecture Into the Muscle Length-Tension Relationship,” J. Biomech., 22(8–9), pp. 943–948. [CrossRef] [PubMed]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. F. J. M. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
de Zee, M. , Dalstra, M. , Cattaneo, P. M. , Rasmussen, J. , Svensson, P. , and Melsen, B. , 2007, “ Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis,” J. Biomech., 40(6), pp. 1192–1201. [CrossRef] [PubMed]
Rasmussen, J. , Damsgaard, M. , and Voigt, M. , 2001, “ Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study,” J. Biomech., 34(3), pp. 409–415. [CrossRef] [PubMed]
Rasmussen, J. , de Zee, M. , Damsgaard, M. , Christensen, S. T. , Marek, C. , and Siebertz, K. , 2005, “ A General Method for Scaling Musculo-Skeletal Models,” International Symposium on Computer Simulation in Biomechanics, Cleveland, OH, July 28–30.
Van Campen, A. , De Groote, F. , Jonkers, I. , and De Schutter, J. , 2013, “ An Extended Dynamometer Setup to Improve the Accuracy of Knee Joint Moment Assessment,” IEEE Trans. Biomed. Eng., 60(5), pp. 1202–1208. [CrossRef] [PubMed]
Gill, P. E. , Murray, W. , and Saunders, M. A. , 2002, “ SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM J. Optim., 12(4), pp. 979–1006. [CrossRef]
Svanberg, K. , 1987, “ The Method of Moving Asymptotes—A New Method for Structural Optimization,” Int. J. Numer. Methods Eng., 24(2), pp. 359–373. [CrossRef]
Perez, R. E. , Jansen, P. W. , and Martins, J. , 2012, “ pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization,” Struct. Mutltidiscip. Optim., 45(1), pp. 101–118. [CrossRef]
Svanberg, K. , 2004, “ Some Modelling Aspects for the Fortran Implementation of MMA,” Optimization and Systems Theory, Department of Mathematics, KTH, Stockholm, Sweeden, Report.
Lloyd, D. G. , and Besier, T. F. , 2003, “ An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo,” J. Biomech., 36(6), pp. 765–776. [CrossRef] [PubMed]
Friederich, J. A. , and Brand, R. A. , 1990, “ Muscle Fiber Architecture in the Human Lower Limb,” J. Biomech., 23(1), pp. 91–95. [CrossRef] [PubMed]
van den Bogert, A. J. , Gerritsen, K. G. M. , and Cole, G. K. , 1998, “ Human Muscle Modelling From a User's Perspective,” J. Electromyogr. Kinesiol., 8(2), pp. 119–124. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Experimental body position reference joint angles: the knee was fixed at 90 deg flexion during ankle (a) and hip (b) measurements. The hip was fixed at 105 deg flexion during knee (c) measurements.

Grahic Jump Location
Fig. 2

Visual design variable interpretation aid

Grahic Jump Location
Fig. 3

Isometric joint-torque comparison of the experimental (experimental) values and the predictions of isom-opt (optimization) and ref-model (reference)

Grahic Jump Location
Fig. 4

Optimal fiber length and tendon slack length of the included muscle-tendon units in the optimization

Grahic Jump Location
Fig. 6

Eccentric isovelocity joint-torque comparison of the experimental measurements, the predicted torques from isom-opt, the predicted torques from the isometric and dyn-opt and the ref-model

Grahic Jump Location
Fig. 5

Concentric isovelocity joint-torque comparison of the experimental (experimental) values, the predicted from isom-opt, the predicted from the isometric and dyn-opt and ref-model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In