0
Technical Brief

Reduced amount or integrity of arterial elastic fibers alters allometric scaling exponents for aortic diameter, but not cardiac function in maturing mice

[+] Author and Article Information
Jessica E. Wagenseil

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
jessica.wagenseil@wustl.edu

1Corresponding author.

ASME doi:10.1115/1.4042766 History: Received July 31, 2018; Revised January 28, 2019

Abstract

Allometric scaling laws relate physiologic parameters to body weight. Genetically modified mice allow investigation of allometric scaling laws when fundamental cardiovascular components are altered. Elastin haploinsufficient (Eln+/-) mice have reduced elastin amounts and fibulin-5 knockout (Fbln5-/-) mice have compromised elastic fiber integrity in the large arteries which may alter cardiovascular scaling laws. Previously published echocardiography data used to investigate aortic and left ventricular function in Eln+/- and Fbln5-/- mice throughout postnatal development and early adulthood were reanalyzed to determine cardiovascular scaling laws. Aortic diameter, heart weight, stroke volume, and cardiac output have scaling exponents within 1 - 32% of the predicted theoretical range, indicating that the scaling laws apply to maturing mice. For aortic diameter, Eln+/- and Eln+/+ mice have similar scaling exponents, but different scaling constants, suggesting a shift in starting diameter, but no changes in aortic growth with body weight. In contrast, the scaling exponent for aortic diameter in Fbln5-/- mice is lower than Fbln5+/+ mice, but the scaling constant is similar, suggesting that aortic growth with body weight is compromised in Fbln5-/- mice. For both Eln+/- and Fbln5-/- groups, the scaling constant for heart weight is increased compared to the respective control group, suggesting an increase in starting heart weight, but no change in the increase with body weight during maturation. The scaling exponents and constants for stroke volume and cardiac output are not significantly affected by reduced elastin amounts or compromised elastic fiber integrity in the large arteries, highlighting a robust cardiac adaptation despite arterial defects.

Copyright (c) 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In