0
Technical Brief

Mapping of Intervertebral Disk Annulus Fibrosus Compressive Properties Is Sensitive to Specimen Boundary Conditions

[+] Author and Article Information
Sarah E. Duclos

Department of Mechanical & Aeronautical Engineering,
Clarkson University,
P.O. Box 5725,
Potsdam, NY 13699

Arthur J. Michalek

Department of Mechanical & Aeronautical Engineering,
Clarkson University,
P.O. Box 5725,
Potsdam, NY 13699
e-mail: ajmichal@clarkson.edu

1Corresponding author.

Manuscript received May 20, 2018; final manuscript received January 4, 2019; published online February 13, 2019. Assoc. Editor: David Corr.

J Biomech Eng 141(4), 044501 (Feb 13, 2019) (5 pages) Paper No: BIO-18-1240; doi: 10.1115/1.4042600 History: Received May 20, 2018; Revised January 04, 2019

Predicting the mechanical behavior of the intervertebral disk (IVD) in health and in disease requires accurate spatial mapping of its compressive mechanical properties. Previous studies confirmed that residual strains in the annulus fibrosus (AF) of the IVD, which result from nonuniform extracellular matrix deposition in response to in vivo loads, vary by anatomical regions (anterior, posterior, and lateral) and zones (inner, middle, and outer). We hypothesized that as the AF is composed of a nonlinear, anisotropic, viscoelastic material, the state of residual strain in the transverse plane would influence the apparent values of axial compressive properties. To test this hypothesis, axial creep indentation tests were performed, using a 1.6 mm spherical probe, at nine different anatomical locations on bovine caudal AFs in both the intact (residual strain present) and strain relieved states. The results showed a shift toward increased spatial homogeneity in all measured parameters, particularly instantaneous strain. This shift was not observed in control AFs, which were tested twice in the intact state. Our results confirm that time-dependent axial compressive properties of the AF are sensitive to the state of residual strain in the transverse plane, to a degree that is likely to affect whole disk behavior.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Freburger, J. K. , Holmes, G. M. , Agans, R. P. , Jackman, A. M. , Darter, J. D. , Wallace, A. S. , Castel, L. D. , Kalsbeek, W. D. , and Carey, T. S. , 2009, “The Rising Prevalence of Chronic Low Back Pain,” Arch. Intern. Med., 169(3), pp. 251–258. [CrossRef] [PubMed]
Masuda, K. , Aota, Y. , Muehleman, C. , Imai, Y. , Okuma, M. , Thonar, E. J. , Andersson, G. B. , and An, H. S. , 2005, “A Novel Rabbit Model of Mild, Reproducible Disc Degeneration by an Anulus Needle Puncture: Correlation Between the Degree of Disc Injury and Radiological and Histological Appearances of Disc Degeneration,” Spine, 30(1), pp. 5–14. [CrossRef] [PubMed]
Kaigle, A. M. , Holm, S. H. , and Hansson, T. H. , 1997, “1997 Volvo Award Winner in Biomechanical Studies. Kinematic Behavior of the Porcine Lumbar Spine: A Chronic Lesion Model,” Spine, 22(24), pp. 2796–2806. [CrossRef] [PubMed]
Marchand, F. , and Ahmed, A. M. , 1990, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine, 15(5), pp. 402–410. [CrossRef] [PubMed]
Mader, K. T. , Peeters, M. , Detiger, S. E. , Helder, M. N. , Smit, T. H. , Le Maitre, C. L. , and Sammon, C. , 2016, “Investigation of Intervertebral Disc Degeneration Using Multivariate FTIR Spectroscopic Imaging,” Faraday Discuss., 187, pp. 393–414. [CrossRef] [PubMed]
Perie, D. , Korda, D. , and Iatridis, J. C. , 2005, “Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability,” J. Biomech., 38(11), pp. 2164–2171. [CrossRef] [PubMed]
Wang, P. , Yang, L. , and Hsieh, A. H. , 2011, “Nucleus Pulposus Cell Response to Confined and Unconfined Compression Implicates Mechanoregulation by Fluid Shear Stress,” Ann. Biomed. Eng., 39(3), pp. 1101–1111. [CrossRef] [PubMed]
Recuerda, M. , Cote, S. P. , Villemure, I. , and Perie, D. , 2011, “Influence of Experimental Protocols on the Mechanical Properties of the Intervertebral Disc in Unconfined Compression,” ASME J. Biomech. Eng., 133(7), p. 071006.
Ellingson, A. M. , and Nuckley, D. J. , 2012, “Intervertebral Disc Viscoelastic Parameters and Residual Mechanics Spatially Quantified Using a Hybrid Confined/In Situ Indentation Method,” J. Biomech., 45(3), pp. 491–496. [CrossRef] [PubMed]
Umehara, S. , Tadano, S. , Abumi, K. , Katagiri, K. , Kaneda, K. , and Ukai, T. , 1996, “Effects of Degeneration on the Elastic Modulus Distribution in the Lumbar Intervertebral Disc,” Spine, 21(7), pp. 811–819. [CrossRef] [PubMed]
Vergari, C. , Rouch, P. , Dubois, G. , Bonneau, D. , Dubousset, J. , Tanter, M. , Gennisson, J. L. , and Skalli, W. , 2014, “Non-Invasive Biomechanical Characterization of Intervertebral Discs by Shear Wave Ultrasound Elastography: A Feasibility Study,” Eur. Radiol., 24(12), pp. 3210–3216. [CrossRef] [PubMed]
Gomez, F. S. , Lorza, R. L. , Bobadilla, M. C. , and Garcia, R. E. , 2017, “Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method,” Materials, 10(10), p. E1116.
Newell, N. , Grigoriadis, G. , Christou, A. , Carpanen, D. , and Masouros, S. D. , 2017, “Material Properties of Bovine Intervertebral Discs Across Strain Rates,” J. Mech. Behav. Biomed. Mater., 65, pp. 824–830. [CrossRef] [PubMed]
Lee, C. H. , Landham, P. R. , Eastell, R. , Adams, M. A. , Dolan, P. , and Yang, L. , 2017, “Development and Validation of a Subject-Specific Finite Element Model of the Functional Spinal Unit to Predict Vertebral Strength,” Proc. Inst. Mech. Eng. H, 231(9), pp. 821–830. [CrossRef] [PubMed]
Guo, Z. , Shi, X. , Peng, X. , and Caner, F. , 2012, “Fibre-Matrix Interaction in the Human Annulus Fibrosus,” J. Mech. Behav. Biomed. Mater., 5(1), pp. 193–205. [CrossRef] [PubMed]
Klisch, S. M. , and Lotz, J. C. , 1999, “Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus,” J. Biomech., 32(10), pp. 1027–1036. [CrossRef] [PubMed]
O'Connell, G. D. , Sen, S. , and Elliott, D. M. , 2012, “Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration,” Biomech. Model. Mechanobiol., 11(3–4), pp. 493–503. [CrossRef] [PubMed]
Jacobs, N. T. , Cortes, D. H. , Peloquin, J. M. , Vresilovic, E. J. , and Elliott, D. M. , 2014, “Validation and Application of an Intervertebral Disc Finite Element Model Utilizing Independently Constructed Tissue-Level Constitutive Formulations That Are Nonlinear, Anisotropic, and Time-Dependent,” J. Biomech., 47(11), pp. 2540–2546. [CrossRef] [PubMed]
Laible, J. P. , Pflaster, D. S. , Krag, M. H. , Simon, B. R. , and Haugh, L. D. , 1993, “A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc,” Spine, 18(5), pp. 659–670. [CrossRef] [PubMed]
Schroeder, Y. , Huyghe, J. M. , van Donkelaar, C. C. , and Ito, K. , 2010, “A Biochemical/Biophysical 3D FE Intervertebral Disc Model,” Biomech. Model. Mechanobiol., 9(5), pp. 641–650. [CrossRef] [PubMed]
Duclos, S. E. , and Michalek, A. J. , 2017, “Residual Strains in the Intervertebral Disc Annulus Fibrosus Suggest Complex Tissue Remodeling in Response to In-Vivo Loading,” J. Mech. Behav. Biomed. Mater., 68, pp. 232–238. [CrossRef] [PubMed]
Mengoni, M. , Kayode, O. , Sikora, S. N. F. , Zapata-Cornelio, F. Y. , Gregory, D. E. , and Wilcox, R. K. , 2017, “Annulus Fibrosus Functional Extrafibrillar and Fibrous Mechanical Behaviour: Experimental and Computational Characterisation,” R. Soc. Open Sci., 4(8), p. 170807. [CrossRef] [PubMed]
Michalek, A. J. , Gardner-Morse, M. G. , and Iatridis, J. C. , 2012, “Large Residual Strains Are Present in the Intervertebral Disc Annulus Fibrosus in the Unloaded State,” J. Biomech., 45(7), pp. 1227–1231. [CrossRef] [PubMed]
Athanasiou, K. A. , Rosenwasser, M. P. , Buckwalter, J. A. , Malinin, T. I. , and Mow, V. C. , 1991, “Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage,” J. Orthop. Res., 9(3), pp. 330–340. [CrossRef] [PubMed]
Moore, A. C. , DeLucca, J. F. , Elliott, D. M. , and Burris, D. L. , 2016, “Quantifying Cartilage Contact Modulus, Tension Modulus, and Permeability With Hertzian Biphasic Creep,” ASME J. Tribol., 138(4), pp. 414051–414057. [CrossRef]
Michalek, A. J. , Kuxhaus, L. , Jaremczuk, D. , and Zaino, N. L. , 2018, “Proteoglycans Contribute Locally to Swelling, but Globally to Compressive Mechanics, in Intact Cervine Medial Meniscus,” J. Biomech., 74, pp. 86–91. [CrossRef] [PubMed]
Sweigart, M. A. , Zhu, C. F. , Burt, D. M. , DeHoll, P. D. , Agrawal, C. M. , Clanton, T. O. , and Athanasiou, K. A. , 2004, “Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus,” Ann. Biomed. Eng., 32(11), pp. 1569–1579. [CrossRef] [PubMed]
Nohava, J. , Swain, M. , Lang, S. J. , Maier, P. , Heinzelmann, S. , Reinhard, T. , and Eberwein, P. , 2018, “Instrumented Indentation for Determination of Mechanical Properties of Human Cornea After Ultraviolet-A Crosslinking,” J. Biomed. Mater. Res. A, 106(5), pp. 1413–1420. [CrossRef] [PubMed]
Caner, F. C. , Guo, Z. , Moran, B. , Bazant, Z. P. , and Carol, I. , 2007, “Hyperelastic Anisotropic Microplane Constitutive Model for Annulus Fibrosus,” ASME J. Biomech. Eng., 129(5), pp. 632–641. [CrossRef]
Hollingsworth, N. T. , and Wagner, D. R. , 2011, “Modeling Shear Behavior of the Annulus Fibrosus,” J. Mech. Behav. Biomed. Mater., 4(7), pp. 1103–1114. [CrossRef] [PubMed]
Mooney, M. , 1940, “A Theory of Large Elastic Deformation,” J. Appl. Phys., 11(9), pp. 582–592. [CrossRef]
Demers, C. N. , Antoniou, J. , and Mwale, F. , 2004, “Value and Limitations of Using the Bovine Tail as a Model for the Human Lumbar Spine,” Spine, 29(24), pp. 2793–2799. [CrossRef] [PubMed]
Latridis, J. C. , Setton, L. A. , Foster, R. J. , Rawlins, B. A. , Weidenbaum, M. , and Mow, V. C. , 1998, “Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression,” J. Biomech., 31(6), pp. 535–544. [CrossRef] [PubMed]
O'Connell, G. D. , Vresilovic, E. J. , and Elliott, D. M. , 2007, “Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry,” Spine, 32(3), pp. 328–333. [CrossRef] [PubMed]
Michalek, A. J. , and Iatridis, J. C. , 2012, “Height and Torsional Stiffness Are Most Sensitive to Annular Injury in Large Animal Intervertebral Discs,” Spine J., 12(5), pp. 425–432. [CrossRef] [PubMed]
Campana, S. , Charpail, E. , de Guise, J. A. , Rillardon, L. , Skalli, W. , and Mitton, D. , 2011, “Relationships Between Viscoelastic Properties of Lumbar Intervertebral Disc and Degeneration Grade Assessed by MRI,” J. Mech. Behav. Biomed. Mater., 4(4), pp. 593–599. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Bovine AF specimens were tested twice using one of two protocols, first in the intact state, then in either the strain relieved or intact state. Approximate indentation locations are indicated by red dots.

Grahic Jump Location
Fig. 2

Typical fit of single exponential to experimental creep data. Experimental data have been down-sampled for illustrative purposes.

Grahic Jump Location
Fig. 3

Instantaneous strain was markedly more spatially heterogeneous when the AF was tested in the intact state (top) than in the strain relieved state (bottom)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In