Research Papers

Effect of Local Neck Anatomy on Localized One-Dimensional Measurements of Arterial Stiffness: A Finite-Element Model Study

[+] Author and Article Information
Adriaan Campo

Ultrasound Elasticity Imaging Laboratory,
Columbia University,
Columbia University Medical Campus,
630 West 168th Street,
Physicians & Surgeons 19-418,
New York, NY 10032;
Laboratory of Biomedical Physics,
Antwerp University,
Campus Groenenborger,
Groenenborgerlaan 171 G.U.339,
Antwerp 2020, Belgium
e-mail: adriaan.campo@ua.ac.be

Matthew D. McGarry

Thayer School of Engineering Dartmouth,
14 Engineering Drive,
Hanover, NH 03755
e-mail: matthew.d.mcgarry@dartmouth.edu

Thomas Panis

Radiology Department,
University Hospital of Brussels,
UZ Brussel, Campus Jette, Laarbeeklaan 101,
Brussels B-1090, Belgium
e-mail: Thomas.panis@gmail.com

Joris Dirckx

Laboratory of Biomedical Physics,
Antwerp University,
Campus Groenenborger,
Groenenborgerlaan 171 G.U.342,
Antwerp 2020, Belgium
e-mail: joris.dirckx@ua.ac.be

Elisa Konofagou

Ultrasound Elasticity Imaging Laboratory,
Columbia University,
Columbia University Medical Campus,
630 West 168th Street,
Physicians & Surgeons 19-418,
New York, NY 10032
e-mail: ek2191@columbia.edu

1Corresponding author.

Manuscript received April 9, 2018; final manuscript received December 3, 2018; published online January 31, 2019. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 141(3), 031011 (Jan 31, 2019) (9 pages) Paper No: BIO-18-1170; doi: 10.1115/1.4042435 History: Received April 09, 2018; Revised December 03, 2018

Cardiovascular diseases (CVD) are the most prevalent cause of death in the Western World, and their prevalence is only expected to rise. Several screening modalities aim at detecting CVD at the early stages. A common target for early screening is common carotid artery (CCA) stiffness, as reflected in the pulse wave velocity (PWV). For assessing the CCA stiffness using ultrasound (US), one-dimensional (1D) measurements along the CCA axis are typically used, ignoring possible boundary conditions of neck anatomy and the US probe itself. In this study, the effect of stresses and deformations induced by the US probe, and the effect of anatomy surrounding CCA on a simulated 1D stiffness measurement (PWVus) is compared with the ground truth stiffness (PWVgt) in 60 finite-element models (FEM) derived from anatomical computed tomography (CT) scans of ten healthy male volunteers. Based on prior knowledge from the literature, and from results in this study, we conclude that it is safe to approximate arterial stiffness using 1D measurements of compliance or pulse wave velocity, regardless of boundary conditions emerging from the anatomy or from the measurement procedure.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


World Health Organisation, “Cardiovascular Diseases (CVDs),” World Health Organization, Geneva, Switzerland, accessed Jan. 14, 2019, http://www.who.int/en/
Kupari, M. , Hekali, P. , Keto, P. , Poutanen, V. P. , Tikkanen, M. J. , and Standerstkjöld-Nordenstam, C. G. , 1994, “ Relation of Aortic Stiffness to Factors Modifying the Risk of Atherosclerosis in Healthy People,” Arterioscler. Thromb. Vasc. Biol., 14(3), pp. 386–394. [CrossRef]
van Popele, N. M. , Grobbee, D. E. , Bots, M. L. , Asmar, R. , Topouchian, J. , Reneman, R. S. , Hoeks, A. P. , van der Kuip, D. A. , Hofman, A. , and Witteman, J. C. , 2001, “ Association Between Arterial Stiffness and Atherosclerosis: The Rotterdam Study,” Stroke, 32(2), pp. 454–460. [CrossRef] [PubMed]
Duprez, D. A. , and Cohn, J. N. , 2007, “ Arterial Stiffness as a Risk Factor for Coronary Atherosclerosis,” Curr. Atheroscler. Rep., 9(2), pp. 139–144. [CrossRef] [PubMed]
Mower, W. R. , Quiñones, W. J. , and Gambhir, S. S. , 1997, “ Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress,” J. Vasc. Surg., 26(4), pp. 602–608. [CrossRef] [PubMed]
Vorp, D. A. , and Vande Geest, J. P. , 2005, “ Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture,” Arterioscler. Thromb. Vasc. Biol., 25(8), pp. 1558–1566. [CrossRef] [PubMed]
Safar, M. E. , and Laurent, P. , 2003, “ Pulse Pressure and Arterial Stiffness in Rats: Comparison With Humans,” Am. J. Physiol. Heart Circ. Physiol., 285(4), pp. H1363–H1369. [CrossRef] [PubMed]
Laurent, S. , Katsahian, S. , Fassot, C. , Tropeano, A.-I. , Gautier, I. , Laloux, B. , and Boutouyrie, P. , 2003, “ Aortic Stiffness Is an Independent Predictor of Fatal Stroke in Essential Hypertension,” Stroke, 34(5), pp. 1203–1206. [CrossRef] [PubMed]
Mitchell, G. F. , Parise, H. , Benjamin, E. J. , Larson, M. G. , Keyes, M. J. , Vita, J. A. , Vasan, R. S. , and Levy, D. , 2004, “ Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women: The Framingham Heart Study,” Hypertension, 43(6), pp. 1239–1245. [CrossRef] [PubMed]
Lee, H.-Y. , and Oh, B.-H. , 2010, “ Aging and Arterial Stiffness,” Circ. J., 74(11), pp. 2257–2262. [CrossRef] [PubMed]
Milnor, W. R. , 1982, Hemodynamics, Williams & Wilkins, Philadelphia, PA.
Van Bortel, L. M. , Balkestein, E. J. , van der Heijden-Spek, J. J. , Vanmolkot, F. H. , Staessen, J. A. , Kragten, J. A. , Vredeveld, J. W. , Safar, M. E. , Struijker Boudier, H. A. , and Hoeks, A. P. , 2001, “ Non-Invasive Assessment of Local Arterial Pulse Pressure: Comparison of Applanation Tonometry and Echo-Tracking,” J. Hypertens., 19(6), pp. 1037–1044. [CrossRef] [PubMed]
Bramwell, J. C. , and Hill, A. V. , 1922, “ The Velocity of the Pulse Wave in Man,” Proc. R. Soc. B, 93(652), pp. 298–306. [CrossRef]
Vappou, J. , Luo, J. , and Konofagou, E. , 2010, “ Response to ‘Potentials and Pitfalls of Local PWV Measurements’,” Am. J. Hypertens., 23(9), pp. 935–935. [CrossRef]
Campo, A. , Soons, J. , Heuten, H. , Ennekens, G. , Govaerts, I. , Vrints, C. , Lava, P. , and Dirckx, J. , 2014, “ Digital Image Correlation for Full-Field Time-Resolved Assessment of Arterial Stiffness,” J. Biomed. Opt., 19(1), p. 016008. https://doi.org/10.1117/1.JBO.19.1.016008
Campo, A. , and Dirckx, J. , 2011, “ Dual-Beam Laser Doppler Vibrometer for Measurement of Pulse Wave Velocity in Elastic Vessels,” Proc. SPIE 8011, p. 80118Y.
Apostolakis, I. Z. , Nandlall, S. D. , and Konofagou, E. E. , 2016, “ Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo,” IEEE Trans. Med. Imaging, 35(1), pp. 13–28. https://doi.org/10.1109/TMI.2015.2453194 [PubMed]
Li, R. X. , Apostolakis, I.-Z. , Connolly, E. S. , and Konofagou, E. E. , 2015, “ Intra-Plaque Stiffness Mapping in Carotid Stenosis Patients In Vivo Using High-Frame Rate Pulse Wave Imaging,” IEEE International Ultrasonics Symposium, Taipei, Taiwan, Oct. 21–24.
Li, R. X. , Luo, J. , Balaram, S. K. , Chaudhry, F. A. , Shahmirzadi, D. , and Konofagou, E. E. , 2013, “ Pulse Wave Imaging in Normal, Hypertensive and Aneurysmal Human Aortas In Vivo: A Feasibility Study,” Phys. Med. Biol., 58(13), pp. 4549–4562. https://doi.org/10.1088/0031-9155/58/13/4549
Nandlall, S. D. , Goldklang, M. P. , Kalashian, A. , Dangra, N. A. , D'Armiento, J. M. , and Konofagou, E. E. , 2014, “ Monitoring and Staging Abdominal Aortic Aneurysm Disease With Pulse Wave Imaging,” Ultrasound Med. Biol., 40(10), pp. 2404–2414. [CrossRef] [PubMed]
Mcgarry, M. , Li, R. , Apostolakis, I. , Nauleau, P. , and Konofagou, E. E. , 2016, “ An Inverse Approach to Determining Spatially Varying Arterial Compliance Using Ultrasound Imaging,” Phys. Med. Biol., 61(15), pp. 5486–5507. [CrossRef] [PubMed]
Huang, C. , Pan, X. , He, Q. , Huang, M. , Huang, L. , Zhao, X. , Yuan, C. , Bai, J. , and Luo, J. , 2016, “ Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging,” Ultrasound Med. Biol., 42(2), pp. 365–377. [CrossRef] [PubMed]
Liu, F. , Yong, Q. , Zhang, Q. , Liu, P. , and Yang, Y. , 2015, “ Real-Time Tissue Elastography for the Detection of Vulnerable Carotid Plaques in Patients Undergoing Endarterectomy: A Pilot Study,” Ultrasound Med. Biol., 41(3), pp. 705–712. [CrossRef] [PubMed]
Zhang, Q. , Li, C. , Zhou, M. , Liao, Y. , Huang, C. , Shi, J. , Wang, Y. , and Wang, W. , 2015, “ Quantification of Carotid Plaque Elasticity and Intraplaque Neovascularization Using Contrast-Enhanced Ultrasound and Image Registration-Based Elastography,” Ultrasonics, 62, pp. 253–262. [CrossRef] [PubMed]
Wang, X. , Jackson, D. C. , Varghese, T. , Mitchell, C. C. , Hermann, B. P. , Kliewer, M. A. , Dempsey, R. J. , Marler, J. R. , Millikan, C. H. , Petito, C. K. , Price, T. R. , Raichle, M. E. , Robertson, J. T. , Thiele, B. , Walker, M. D. , Zimmermana, R. A. , and Leblanc, G. G. , 2014, “ Correlation of Cognitive Function With Ultrasound Strain Indices in Carotid Plaque,” Ultrasound Med. Biol., 40(1), pp. 78–89. [CrossRef] [PubMed]
Roy Cardinal, M.-H. , Heusinkveld, M. H. G. , Qin, Z. , Lopata, R. G. P. , Naim, C. , Soulez, G. , and Cloutier, G. , 2017, “ Carotid Artery Plaque Vulnerability Assessment Using Noninvasive Ultrasound Elastography: Validation With MRI,” Am. J. Roentgenol., 209(1), pp. 142–151. [CrossRef]
Fung, Y. C. , Zweifach, B. W. , and Intaglietta, M. , 1966, “ Elastic Environment of the Capillary Bed,” Circ. Res., 19(2), pp. 441–461. [CrossRef] [PubMed]
Podgórski, M. , Winnicka, M. , Polguj, M. , Grzelak, P. , Łukaszewski, M. , and Stefańczyk, L. , 2015, “ Does the Internal Jugular Vein Affect the Elasticity of the Common Carotid Artery?,” Cardiovasc. Ultrasound, 14(1), p. 40. [CrossRef]
Nippa, J. H. , and Alexander, R. H. , 1971, “ Pulse Wave Velocity in Human Veins,” J. Appl. Physiol., 30(4), pp. 558–563. https://doi.org/10.1152/jappl.1971.30.4.558
Akhtar, R. , Sherratt, M. J. , Cruickshank, J. K. , and Derby, B. , 2011, “ Characterizing the Elastic Properties of Tissues,” Mater. Today, 14(3), pp. 96–105. [CrossRef]
Iivarinen, J. T. , Korhonen, R. K. , Julkunen, P. , and Jurvelin, J. S. , 2011, “ Experimental and Computational Analysis of Soft Tissue Stiffness in Forearm Using a Manual Indentation Device,” Med. Eng. Phys., 33(10), pp. 1245–1253. [CrossRef] [PubMed]
Van Loocke, M. , Lyons, C. G. , and Simms, C. K. , 2006, “ A Validated Model of Passive Muscle in Compression,” J. Biomech., 39(16), pp. 2999–3009. [CrossRef] [PubMed]
Zheng, Y. P. , and Mak, A. F. T. , 1999, “ Extraction of Quasi-Linear Viscoelastic Parameters for Lower Limb Soft Tissues From Manual Indentation Experiment,” ASME J. Biomech. Eng., 121(3), p. 330. [CrossRef]
Huang, Y.-P. , Zheng, Y.-P. , and Leung, S.-F. , 2005, “ Quasi-Linear Viscoelastic Properties of Fibrotic Neck Tissues Obtained From Ultrasound Indentation Tests In Vivo,” Clin. Biomech., 20(2), pp. 145–154. [CrossRef]
van den Berkmortel, F. , Wollersheim, H. , van Langen, H. , and Thien, T. , 1998, “ Dynamic Vessel Wall Properties and Their Reproducibility in Subjects With Increased Cardiovascular Risk,” J. Hum. Hypertens., 12(6), pp. 345–350. [CrossRef] [PubMed]
Gamble, G. , Zorn, J. , Sanders, G. , MacMahon, S. , and Sharpe, N. , 1994, “ Estimation of Arterial Stiffness, Compliance, and Distensibility From M-Mode Ultrasound Measurements of the Common Carotid Artery,” Stroke, 25(1), pp. 11–16. https://www.ahajournals.org/doi/10.1161/01.STR.25.1.11
McGarry, M. , Nauleau, P. , Apostolakis, I. , and Konofagou, E. , 2017, “ In Vivo Repeatability of the Pulse Wave Inverse Problem in Human Carotid Arteries,” J. Biomech., 64, pp. 136–144. [CrossRef] [PubMed]
Spearman, C. , 1987, “ The Proof and Measurement of Association Between Two Things,” Am. J. Psychol., 100(3–4), pp. 441–471. [CrossRef] [PubMed]
Bland, J. M. , and Altman, D. , 1986, “ Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement,” Lancet, 327(8476), pp. 307–310. [CrossRef]
Altman, D. G. , and Bland, J. M. , 1983, “ Measurement in Medicine: The Analysis of Method Comparison Studies,” The Statistician, 32(3), pp. 307–317.
Wilcoxon, F. , 1945, “ Individual Comparisons by Ranking Methods,” Biom. Bull., 1(6), p. 80. [CrossRef]
Liu, Y. , Dang, C. , Garcia, M. , Gregersen, H. , and Kassab, G. S. , 2007, “ Surrounding Tissues Affect the Passive Mechanics of the Vessel Wall: Theory and Experiment,” Am. J. Physiol. Circ. Physiol., 293(6), pp. H3290–H3300. [CrossRef]
Nam, K.-H. , Bok, T.-H. , Jin, C. , and Paeng, D.-G. , 2014, “ Asymmetric Radial Expansion and Contraction of Rat Carotid Artery Observed Using a High-Resolution Ultrasound Imaging System,” Ultrasonics, 54(1), pp. 233–240. [CrossRef] [PubMed]
Klaesner, J. W. , Hastings, M. K. , Zou, D. , Lewis, C. , and Mueller, M. J. , 2002, “ Plantar Tissue Stiffness in Patients With Diabetes Mellitus and Peripheral Neuropathy,” Arch. Phys. Med. Rehabil., 83(12), pp. 1796–1801. [CrossRef] [PubMed]
Hayes, W. C. , Keer, L. M. , Herrmann, G. , and Mockros, L. F. , 1972, “ A Mathematical Analysis for Indentation Tests of Articular Cartilage,” J. Biomech., 5(5), pp. 541–551. [CrossRef] [PubMed]
Bader, D. L. , and Bowker, P. , 1983, “ Mechanical Characteristics of Skin and Underlying Tissues In Vivo,” Biomaterials, 4(4), pp. 305–308. [CrossRef] [PubMed]
Krouskop, T. A. , Muilenberg, A. L. , Doughtery, D. R. , and Winningham, D. J. , 1987, “ Computer-Aided Design of a Prosthetic Socket for an Above-Knee Amputee,” J. Rehabil. Res. Dev., 24(2), pp. 31–38. https://www.rehab.research.va.gov/jour/87/24/2/pdf/muilenberg.pdf [PubMed]
Zheng, Y. , Mak, A. F. , and Lue, B. , 1999, “ Objective Assessment of Limb Tissue Elasticity: Development of a Manual Indentation Procedure,” J. Rehabil. Res. Dev., 36(2), pp. 71–85. https://www.rehab.research.va.gov/jour/99/36/2/zheng.pdf [PubMed]
Mak, A. F. T. , Liu, G. H. W. , and Lee, S. Y. , 1994, “ Biomechanical Assessment of Below-Knee Residual Limb Tissue,” J. Rehabil. Res. Dev., 31(3), pp. 188–198. https://www.semanticscholar.org/paper/Biomechanical-assessment-of-below-knee-residual-Mak-Liu/58f59242ba496fd05ad0be59765e96bc69dca4d9
Reynolds, D. P. , and Lord, M. , 1992, “ Interface Load Analysis for Computer-Aided Design of Below-Knee Prosthetic Sockets,” Med. Biol. Eng. Comput., 30(4), pp. 419–426. [CrossRef] [PubMed]
Torres-Moreno, R. , Morrison, J. B. , Cooper, D. , Saunders, C. G. , and Foort, J. , 1992, “ A Computer-Aided Socket Design Procedure for Above-Knee Prostheses,” J. Rehabil. Res. Dev., 29(3), pp. 35–44. [CrossRef] [PubMed]
Vannah, W. M. , and Childress, D. S. , 1996, “ Indentor Tests and Finite Element Modeling of Bulk Muscular Tissue In Vivo,” J. Rehabil. Res. Dev., 33(3), pp. 239–252. https://www.rehab.research.va.gov/jour/96/33/3/pdf/vannah.pdf [PubMed]


Grahic Jump Location
Fig. 1

Schematic rendition of the CCA and the bifurcation. CT slice 1 was always taken 10 mm below the wall of the far side of the bifurcation. Slice 2 and 3 were taken 20 and 40 mm below slice 1, respectively (not to scale). Common carotid artery (CCA), internal carotid artery (ICA), external carotid artery (ECA), carotid bifurcation (Bifurcation), and carotid bulb (Bulb).

Grahic Jump Location
Fig. 6

In order to measure the internal CCA lumen diameter D, the probe is placed along the CCA, and the distance between upper and lower CCA wall is measured

Grahic Jump Location
Fig. 2

Example of a CT slice used in this study (left pane), and the simplified parameterized FE model representing potentially important geometrical factors (right pane). The CCA and JV are modeled as circular tubes with a 1 mm thick isotropic elastic wall (E = 200/100 kPa, v = 0.49) embedded in a softer elastic isotropic medium (E = 1–100 kPa, v = 0.49, yellow dashed circles), modeled as a nonsliding interface. The elastic isotropic medium has a fixed boundary condition (marked as red dashed lines) where it touches the trachea (yellow dashed line) and the vertebrae (yellow dashed line) as well as 20 cm away laterally from these structures. In the right pane, parts that are not shown are indicated as (//). The skin surface can move freely (marked as green dashed line). The viewing angle of the probe is considered perpendicular to the skin surface, and going through the center of the CCA (orange dashed line, right pane). Additionally, the mesh is displayed (right pane). Pink numbers/arrows indicate measured parameters: distance between CCA-JV (1), 2.9 mm; distance CCA-skin (2), 28 mm; distance CCA-tracheal cartilage (3), 11 mm; distance CCA-vertebrae (4), 16 mm.

Grahic Jump Location
Fig. 3

Deformed FE model, displayed without mesh. The probe movement is modeled as a fixed displacement boundary condition, representing an inward displacement of 5 mm. The circular structures are the common carotid artery (CCA, left) and the jugular vein (JV, right). Maximal principal stresses are displayed, reaching values as high as 45 kPa in this example.

Grahic Jump Location
Fig. 4

A convergence analysis was performed. FE models all have between 50,000 and 100,000 elements, depending on their respective size.

Grahic Jump Location
Fig. 7

Correlation plot (left pane) and Bland–Altman plot (right pane) of PWVgt in absence of probe stresses and PWVus in presence of probe stresses

Grahic Jump Location
Fig. 8

Correlation plot of the difference between PWVgt in absence of probe stresses and PWVus in presence of probe stresses as compared to the distance of the carotid to the laryngeal cartilage (left pane) and the skin surface (right pane)

Grahic Jump Location
Fig. 5

An analytic model of a thin walled pipe with a fixed Young's modulus (E = 200 kPa, v = 0.49) embedded in a softer medium with varying Young's modulus (E = 1–100 kPa, v = 0.49) (middle pane) was compared with the FE models of this study (in absence of any probe stresses) (left pane). Results for PWV based analytic and FE models coincide with less than 0.01% difference (right pane). Max PS = maximal principal stress.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In