Technical Brief

The Effect of Inhomogeneous Trabecular Stiffness Relationship Selection on Finite Element Outcomes for Shoulder Arthroplasty

[+] Author and Article Information
Jacob M. Reeves

Department of Mechanical Engineering,
Western University Canada,
1151 Richmond Street,
London, ON N6A3K7, Canada
e-mail: jreeves3@uwo.ca

George S. Athwal

Roth|McFarlane Hand and Upper Limb Centre,
268 Grosvenor StreetE-p,
London, ON N6A4V2, Canada
e-mail: gathwal@uwo.ca

James A. Johnson

Department of Mechanical Engineering,
Western University Canada,
1151 Richmond Street,
London, ON N6A3K7, Canada
e-mail: jajohnso@uwo.ca

G. Daniel G. Langohr

Department of Mechanical Engineering,
Western University Canada,
1151 Richmond Street,
London, ON N6A3K7, Canada
e-mail: glangohr@uwo.ca

Manuscript received March 1, 2018; final manuscript received November 10, 2018; published online January 18, 2019. Assoc. Editor: David Corr.

J Biomech Eng 141(3), 034501 (Jan 18, 2019) (8 pages) Paper No: BIO-18-1112; doi: 10.1115/1.4042172 History: Received March 01, 2018; Revised November 10, 2018

An important feature of humeral orthopedic finite element (FE) models is the trabecular stiffness relationship. These relationships depend on the anatomic site from which they are derived; but have not been developed for the humerus. As a consequence, humeral FE modeling relies on relationships for other anatomic sites. The variation in humeral FE outcomes due to the trabecular stiffness relationship is assessed. Stemless arthroplasty FE models were constructed from CT scans of eight humeri. Models were loaded corresponding to 45 deg and 75 deg abduction. Each bone was modeled five times with the only variable being the trabecular stiffness relationship: four derived from different anatomic-sites and one pooled across sites. The FE outcome measures assessed were implant-bone contact percentage, von Mises of the change in stress, and bone response potential. The variance attributed to the selection of the trabecular stiffness relationship was quantified as the standard deviation existing between models of different trabecular stiffness. Overall, variability due to changing the trabecular stiffness relationship was low for all humeral FE outcome measures assessed. The variability was highest within the stress and bone formation potential outcome measures of the trabecular region. Variability only exceeded 10% in the trabecular stress change within two of the eight slices evaluated. In conclusion, the low variations attributable to the selection of a trabecular stiffness relationship based on anatomic-site suggest that FE models constructed for shoulder arthroplasty can utilize an inhomogeneous site-pooled trabecular relationship without inducing marked variability in the assessed outcome measures.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Neer, C. S. , 1955, “ Articular Replacement for the Humeral Head,” J. Bone Jt. Surg., 37(2), pp. 215–228. [CrossRef]
Churchill, R. S. , and Athwal, G. S. , 2016, “ Stemless Shoulder Arthroplasty—Current Results and Designs,” Curr. Rev. Musculoskeletal Med., 9(1), pp. 10–16. [CrossRef]
Churchill, R. S. , 2014, “ Stemless Shoulder Arthroplasty: Current Status,” J. Shoulder Elbow Surg., 23(9), pp. 1409–1414. [CrossRef] [PubMed]
Inoue, K. , Suenaga, N. , Oizumi, N. , Yamaguchi, H. , Miyoshi, N. , Taniguchi, N. , Munemoto, M. , Egawa, T. , and Tanaka, Y. , 2017, “ Humeral Bone Resorption After Anatomic Shoulder Arthroplasty Using an Uncemented Stem,” J. Shoulder Elbow Surg., 26(11), pp. 1984–1989. [CrossRef] [PubMed]
Nagels, J. , Stokdijk, M. , and Rozing, P. M. , 2003, “ Stress Shielding and Bone Resorption in Shoulder Arthroplasty,” J. Shoulder Elbow Surg., 2746(2), pp. 35–39. [CrossRef]
Spormann, C. , Durchholz, H. , Audigé, L. , Flury, M. , Schwyzer, H. K. , Simmen, B. R. , and Kolling, C. , 2014, “ Patterns of Proximal Humeral Bone Resorption After Total Shoulder Arthroplasty With an Uncemented Rectangular Stem,” J. Shoulder Elbow Surg., 23(7), pp. 1028–1035. [CrossRef] [PubMed]
Habermeyer, P. , Lichtenberg, S. , Tauber, M. , and Magosch, P. , 2015, “ Midterm Results of Stemless Shoulder Arthroplasty: A Prospective Study,” J. Shoulder Elbow Surg., 24(9), pp. 1463–1472. [CrossRef] [PubMed]
Churchill, R. S. , Chuinard, C. , Wiater, J. M. , Friedman, R. , Freehill, M. , Jacobson, S. , Spencer, E. , Holloway, G. B. , Wittstein, J. , Lassiter, T. , Smith, M. , Blaine, T. , and Nicholson, G. P. , 2016, “ Clinical and Radiographic Outcomes of the Simpliciti Canal-Sparing Shoulder Arthroplasty System: A Prospective Two-Year Multicenter Study,” J. Bone Jt. Surg., 98(7), pp. 552–560. [CrossRef]
Huguet, D. , DeClercq, G. , Rio, B. , Teissier, J. , and Zipoli, B. , 2010, “ Results of a New Stemless Shoulder Prosthesis: Radiologic Proof of Maintained Fixation and Stability After a Minimum of Three Years' Follow-Up,” J. Shoulder Elbow Surg., 19(6), pp. 847–52. [CrossRef] [PubMed]
Geurts, G. F. , van Riet, R. P. , Jansen, N. , and Declercq, G. , 2010, “ Placement of the Stemless Humeral Component in the Total Evolutive Shoulder System (TESS),” Tech. Hand Upper Extremity Surg., 14(4), pp. 214–7. [CrossRef]
Kadum, B. , Mafi, N. , Norberg, S. , and Sayed-Noor, A. S. , 2011, “ Results of the Total Evolutive Shoulder System (TESS): A Single-Centre Study of 56 Consecutive Patients,” Arch. Orthop. Trauma Surg., 131(12), pp. 1623–1629. [CrossRef] [PubMed]
Kadum, B. , Hassany, H. , Wadsten, M. , Sayed-Noor, A. , and Sjoden, G. , 2016, “ Geometrical Analysis of Stemless Shoulder Arthroplasty: A Radiological Study of Seventy TESS Total Shoulder Prostheses,” Int. Orthop., 40(4), pp. 751–758. [CrossRef] [PubMed]
Razmjou, H. , Holtby, R. , Christakis, M. , Axelrod, T. , and Richards, R. , 2013, “ Impact of Prosthetic Design on Clinical and Radiologic Outcomes of Total Shoulder Arthroplasty: A Prospective Study,” J. Shoulder Elb. Surg., 22(2), pp. 206–214. [CrossRef]
Maier, M. W. , Lauer, S. , Klotz, M. C. , Bülhoff, M. , Spranz, D. , and Zeifang, F. , 2015, “ Are There Differences Between Stemless and Conventional Stemmed Shoulder Prostheses in the Treatment of Glenohumeral Osteoarthritis?,” BMC Musculoskeletal Disord., 16(1), p. 275. [CrossRef]
Uschok, S. , Magosch, P. , Moe, M. , Lichtenberg, S. , and Habermeyer, P. , 2017, “ Is the Stemless Humeral Head Replacement Clinically and Radiographically a Secure Equivalent to Standard Stem Humeral Head Replacement in the Long-Term Follow-Up? A Prospective Randomized Trial,” J. Shoulder Elbow Surg., 26(2), pp. 225–232. [CrossRef] [PubMed]
Berth, A. , and Pap, G. , 2013, “ Stemless Shoulder Prosthesis Versus Conventional Anatomic Shoulder Prosthesis in Patients With Osteoarthritis: A Comparison of the Functional Outcome After a Minimum of Two Years Follow-Up,” J. Orthop. Traumatol., 14(1), pp. 31–37. [CrossRef] [PubMed]
Kluess, D. , Souffrant, R. , Mittelmeier, W. , Wree, A. , Schmitz, K. P. , and Bader, R. , 2009, “ A Convenient Approach for Finite-Element-Analyses of Orthopaedic Implants in Bone Contact: Modeling and Experimental Validation,” Comput. Methods Programs Biomed., 95(1), pp. 23–30. [CrossRef] [PubMed]
Razfar, N. , Reeves, J. M. , Langohr, D. G. , Willing, R. , Athwal, G. S. , and Johnson, J. A. , 2016, “ Comparison of Proximal Humeral Bone Stresses Between Stemless, Short Stem, and Standard Stem Length: A Finite Element Analysis,” J. Shoulder Elbow Surg., 25(7), pp. 1076–1083. [CrossRef] [PubMed]
Couteau, B. , Mansat, P. , Estivalèzes, E. , Darmana, R. , Mansat, M. , and Egan, J. , 2001, “ Finite Element Analysis of the Mechanical Behavior of a Scapula Implanted With a Glenoid Prosthesis,” Clin. Biomech., 16(7), pp. 566–575. [CrossRef]
Harrigan, T. P. , and Harris, W. H. , 1991, “ A Three-Dimensional Non-Linear Finite Element Study of the Effect of Cement-Prosthesis Debonding in Cemented Femoral Total Hip Components,” J. Biomech., 24(11), pp. 1047–1058. [CrossRef] [PubMed]
Huiskes, R. , Weinans, H. , and van Rietbergen, B. , 1992, “ The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials,” Clin. Orthop. Relat. Res., 274, pp. 124–134.
Asgari, S. A. , Hamouda, A. M. S. , Mansor, S. B. , Singh, H. , and Mahdi, E. , 2004, “ Finite Element Modeling of a Generic Stemless Hip Implant Design in Comparison With Conventional Hip Implants,” Finite Elem. Anal. Des., 40(15), pp. 2027–2047. [CrossRef]
Engh, C. , and McGovern, T. , 1992, “ A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty,” J. Bone Jt. Surg., 74(7), pp. 1009–1020. [CrossRef]
Lerch, M. , Kurtz, A. , Stukenborg-Colsman, C. , Nolte, I. , Weigel, N. , Bouguecha, A. , and Behrens, B. A. , 2012, “ Bone Remodeling After Total Hip Arthroplasty With a Short Stemmed Metaphyseal Loading Implant: Finite Element Analysis Validated by a Prospective DEXA Investigation,” J. Orthop. Res., 30(11), pp. 1822–1829. [CrossRef] [PubMed]
Abdul-Kadir, M. R. , Hansen, U. , Klabunde, R. , Lucas, D. , and Amis, A. , 2008, “ Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit,” J. Biomech., 41(3), pp. 587–594. [CrossRef] [PubMed]
Yosibash, Z. , Trabelsi, N. , and Milgrom, C. , 2007, “ Reliable Simulations of the Human Proximal Femur by High-Order Finite Element Analysis Validated by Experimental Observations,” J. Biomech., 40(16), pp. 3688–3699. [CrossRef] [PubMed]
Kheirollahi, H. , and Luo, Y. , 2015, “ Assessment of Hip Fracture Risk Using Cross-Section Strain Energy Determined by QCT-Based Finite Element Modeling,” Biomed Res. Int., 2015, p. e413839. [CrossRef]
Reimeringer, M. , Nuño, N. , Desmarais-Trépanier, C. , Lavigne, M. , and Vendittoli, P. A. , 2012, “ The Influence of Uncemented Femoral Stem Length and Design on Its Primary Stability: A Finite Element Analysis,” Comput. Methods Biomech. Biomed. Eng., 16, pp. 1–11.
Willing, R. T. , Lalone, E. A. , Shannon, H. , Johnson, J. A. , and King, G. J. W. , 2013, “ Validation of a Finite Element Model of the Human Elbow for Determining Cartilage Contact Mechanics,” J. Biomech., 46(10), pp. 1767–1771. [CrossRef] [PubMed]
Neuert, M. A. C. , Austman, R. L. , and Dunning, C. E. , 2013, “ The Comparison of Density-Elastic Modulus Equations for the Distal Ulna at Multiple Forearm Positions: A Finite Element Study,” Acta Bioeng. Biomech., 15(3), pp. 37–43. [PubMed]
Neuert, M. A. C. , and Dunning, C. E. , 2013, “ Determination of Remodeling Parameters for a Strain-Adaptive Finite Element Model of the Distal Ulna,” Proc. Inst. Mech. Eng., Part H., 227(9), pp. 994–1001. [CrossRef]
Austman, R. L. , Milner, J. S. , Holdsworth, D. W. , and Dunning, C. E. , 2008, “ The Effect of the Density-Modulus Relationship Selected to Apply Material Properties in a Finite Element Model of Long Bone,” J. Biomech., 41(15), pp. 3171–3176. [CrossRef] [PubMed]
Willing, R. , King, G. J. W. , and Johnson, J. A. , 2012, “ The Effect of Implant Design of Linked Total Elbow Arthroplasty on Stability and Stress—A Finite Element Analysis,” Comput. Methods Biomech. Biomed. Eng., 17(11), pp. 1165–1172.
Dahan, G. , Trabelsi, N. , Safran, O. , and Yosibash, Z. , 2016, “ Verified and Validated Finite Element Analyses of Humeri,” J. Biomech., 49(7), pp. 1094–1102. [CrossRef] [PubMed]
Pomwenger, W. , Entacher, K. , Resch, H. , and Schuller-Götzburg, P. , 2014, “ Need for CT-Based Bone Density Modelling in Finite Element Analysis of a Shoulder Arthroplasty Revealed Through a Novel Method for Result Analysis,” Biomed. Tech., 59(5), pp. 421–430.
Bayraktar, H. H. , Morgan, E. F. , Niebur, G. L. , Morris, G. E. , Wong, E. K. , and Keaveny, T. M. , 2004, “ Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue,” J. Biomech., 37(1), pp. 27–35. [CrossRef] [PubMed]
Rho, J. Y. , Ashman, R. B. , and Turner, C. H. , 1993, “ Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements,” J. Biomech., 26(2), pp. 111–119. [CrossRef] [PubMed]
Morgan, E. F. , Bayraktar, H. H. , and Keaveny, T. M. , 2003, “ Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site,” J. Biomech., 36(7), pp. 897–904. [CrossRef] [PubMed]
Vijayakumar, V. , and Quenneville, C. E. , 2016, “ Quantifying the Regional Variations in the Mechanical Properties of Cancellous Bone of the Tibia Using Indentation Testing and Quantitative Computed Tomographic Imaging,” Proc. Inst. Mech. Eng., Part H, 230(6), pp. 588–593. [CrossRef]
Austman, R. L. , Milner, J. S. , Holdsworth, D. W. , and Dunning, C. E. , 2009, “ Development of a Customized Density-Modulus Relationship for Use in Subject-Specific Finite Element Models of the Ulna,” Proc. Inst. Mech. Eng., Part H, 223(6), pp. 787–794. [CrossRef]
Schileo, E. , Taddei, F. , Malandrino, A. , Cristofolini, L. , and Viceconti, M. , 2007, “ Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones,” J. Biomech., 40(13), pp. 2982–2989. [CrossRef] [PubMed]
Peng, L. , Bai, J. , Zeng, X. , and Zhou, Y. , 2006, “ Comparison of Isotropic and Orthotropic Material Property Assignments on Femoral Finite Element Models Under Two Loading Conditions,” Med. Eng. Phys., 28(3), pp. 227–233. [CrossRef] [PubMed]
Eberle, S. , Göttlinger, M. , and Augat, P. , 2013, “ Individual Density-Elasticity Relationships Improve Accuracy of Subject-Specific Finite Element Models of Human Femurs,” J. Biomech., 46(13), pp. 2152–2157. [CrossRef] [PubMed]
Cong, A. , Buijs, J. O. D. , and Dragomir-Daescu, D. , 2011, “ In Situ Parameter Identification of Optimal Density-Elastic Modulus Relationships in Subject-Specific Finite Element Models of the Proximal Femur,” Med. Eng. Phys., 33(2), pp. 164–173. [CrossRef] [PubMed]
Helgason, B. , Perilli, E. , Schileo, E. , Taddei, F. , Brynjólfsson, S. , and Viceconti, M. , 2008, “ Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review,” Clin. Biomech., 23(2), pp. 135–146. [CrossRef]
Morgan, E. F. , and Keaveny, T. M. , 2001, “ Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site,” J. Biomech., 34(5), pp. 569–577. [CrossRef] [PubMed]
Kuiper, J. H. , and Huiskes, R. , 1996, “ Friction and Stem Stiffness Affect Dynamic Interface Motion in Total Hip Replacement,” J. Orthop. Res., 14(1), pp. 36–43. [CrossRef] [PubMed]
Lee, Y. T. , and Welsch, G. , 1990, “Young's Modulus and Damping of Ti-6AI-4V Alloy as a Function of Heat Treatment and Oxygen Concentration,” Mater. Sci. Eng., 128(1), pp. 77–89. [CrossRef]
Grant, J. A. , Bishop, N. E. , Gotzen, N. , Sprecher, C. , Honl, M. , and Morlock, M. M. , 2007, “ Artificial Composite Bone as a Model of Human Trabecular Bone: The Implant—Bone Interface,” J. Biomech., 40(5), pp. 1158–1164. [CrossRef] [PubMed]
Bergmann, G. , Graichen, F. , Bender, A. , Kaab, M. , Rohlmann, A. , and Westerhoff, P. , 2007, “ In Vivo Glenohumeral Contact Forces-Measurements in the First Patient 7 Months Postoperatively,” J. Biomech., 40(10), pp. 2139–2149. [CrossRef] [PubMed]
Huiskes, R. , Weinans, H. , Grootenboer, H. J. , Dalstra, M. , Fudala, B. , and Slooff, T. J. , 1987, “ Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis,” J. Biomech., 20(11–12), pp. 1135–1150. [CrossRef] [PubMed]
Huiskes, R. , Ruimerman, R. , Lenthe, G. H. V. , and Janssen, J. D. , 2000, “ Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone,” Nature, 405(6787), pp. 704–706. [CrossRef] [PubMed]
Weinans, H. , Huiskes, R. , and Grootenboer, H. J. , 1992, “ The Behavior of Adaptive Bone-Remodeling Simulation Models,” J. Biomech., 25(12), pp. 1425–1441. [CrossRef] [PubMed]
Carter, D. R. , Fyhrie, D. P. , and Whalen, R. T. , 1987, “ Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy,” J. Biomech., 20(8), pp. 785–794. [CrossRef] [PubMed]
Johnson, J. A. , Rath, D. A. , Dunning, C. E. , Roth, S. E. , and King, G. J. W. , 2000, “ Simulation of Elbow and Forearm Motion In Vitro Using a Load Controlled Testing Apparatus,” J. Biomech., 33(5), pp. 635–639. [CrossRef] [PubMed]
Reeves, J. M. , 2018, “ An In-Silico Assessment of Stemless Shoulder Arthroplasty: From CT to Predicted Bone Response,” Ph.D. thesis, The University of Western Ontario, London, ON, Canada. https://ir.lib.uwo.ca/etd/5398/


Grahic Jump Location
Fig. 1

Depiction of articular load application in the FE model. Loads were oriented such that the force vector would pass through the humeral head's center of curvature and satisfy the in vivo Cartesian component ratios (ΔAP: Anterior–Posterior, ΔML: Medial–Lateral, ΔSI: Superior–Inferior).

Grahic Jump Location
Fig. 2

Density–modulus relationships are presented for all inhomogeneous anatomic sites that were utilized in the present investigation. The mean (solid vertical line) and SD (dashed vertical lines) density of the present FE population is shown for reference.

Grahic Jump Location
Fig. 3

Comparison of the percentage of implant-bone surface area that remained in contact under joint loading for each of the trabecular stiffness relationship models assessed

Grahic Jump Location
Fig. 4

Comparison of the volume-weighted von Mises of the change in cortical and trabecular bone stress for 75 deg of abduction for each of the trabecular stiffness relationships assessed

Grahic Jump Location
Fig. 5

Comparison of the potential cortical bone response for 75 deg of abduction for all trabecular stiffness relationships assessed

Grahic Jump Location
Fig. 6

Comparison of the potential trabecular bone response for 75 deg of abduction for all trabecular stiffness relationships assessed



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In