0
Research Papers

Comparison of Biomechanical Properties and Microstructure of Trabeculae Carneae, Papillary Muscles, and Myocardium in the Human Heart

[+] Author and Article Information
Fatemeh Fatemifar

Department of Mechanical Engineering,
University of Texas at San Antonio,
San Antonio, TX 78249

Marc D. Feldman, Meagan Oglesby

Department of Medicine,
University of Texas Health Science
Center at San Antonio,
San Antonio, TX 78229

Hai-Chao Han

Department of Mechanical Engineering,
University of Texas at San Antonio,
San Antonio, TX 78249
e-mail: hchan@utsa.edu

1Corresponding author.

Manuscript received May 19, 2018; final manuscript received October 28, 2018; published online December 5, 2018. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 141(2), 021007 (Dec 05, 2018) (10 pages) Paper No: BIO-18-1239; doi: 10.1115/1.4041966 History: Received May 19, 2018; Revised October 28, 2018

Trabeculae carneae account for a significant portion of human ventricular mass, despite being considered embryologic remnants. Recent studies have found trabeculae hypertrophy and fibrosis in hypertrophied left ventricles with various pathological conditions. The objective of this study was to investigate the passive mechanical properties and microstructural characteristics of trabeculae carneae and papillary muscles compared to the myocardium in human hearts. Uniaxial tensile tests were performed on samples of trabeculae carneae and myocardium strips, while biaxial tensile tests were performed on samples of papillary muscles and myocardium sheets. The experimental data were fitted with a Fung-type strain energy function and material coefficients were determined. The secant moduli at given diastolic stress and strain levels were determined and compared among the tissues. Following the mechanical testing, histology examinations were performed to investigate the microstructural characteristics of the tissues. Our results demonstrated that the trabeculae carneae were significantly stiffer (Secant modulus SM2 = 80.06 ± 10.04 KPa) and had higher collagen content (16.10 ± 3.80%) than the myocardium (SM2 = 55.14 ± 20.49 KPa, collagen content = 10.06 ± 4.15%) in the left ventricle. The results of this study improve our understanding of the contribution of trabeculae carneae to left ventricular compliance and will be useful for building accurate computational models of the human heart.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yancy, C. W. , Jessup, M. , Bozkurt, B. , Butler, J. , Casey, D. E. , Drazner, M. H. , Fonarow, G. C. , Geraci, S. A. , Horwich, T. , Januzzi, J. L. , Johnson, M. R. , Kasper, E. K. , Levy, W. C. , Masoudi, F. A. , McBride, P. E. , McMurray, J. J. V. , Mitchell, J. E. , Peterson, P. N. , Riegel, B. , Sam, F. , Stevenson, L. W. , Tang, W. H. W. , Tsai, E. J. , and Wilkoff, B. L. , 2013, “ 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines,” Circulation, 128(16), pp. e240–e327. [PubMed]
Dhingra, A. , Garg, A. , Kaur, S. , Chopra, S. , Batra, J. S. , Pandey, A. , Chaanine, A. H. , and Agarwal, S. K. , 2014, “ Epidemiology of Heart Failure With Preserved Ejection Fraction,” Curr. Heart Failure Rep., 11(4), pp. 354–365.
Owan, T. E. , Hodge, D. O. , Herges, R. M. , Jacobsen, S. J. , Roger, V. L. , and Redfield, M. M. , 2006, “ Trends in Prevalence and Outcome of Heart Failure With Preserved Ejection Fraction,” New Engl. J. Med., 355(3), pp. 251–259.
LeWinter, M. M. , and Meyer, M. , 2013, “ Mechanisms of Diastolic Dysfunction in HFpEF: If It's Not One Thing It's Another,” Circ. Heart Failure, 6(6), pp. 1112–1115.
Fernandez-Golfin, C. , Pachon, M. , Corros, C. , Bustos, A. , Cabeza, B. , Ferreiros, J. , de Isla, L. P. , Macaya, C. , and Zamorano, J. , 2009, “ Left Ventricular Trabeculae: Quantification in Different Cardiac Diseases and Impact on Left Ventricular Morphological and Functional Parameters Assessed With Cardiac Magnetic Resonance,” J. Cardiovasc. Med., 10(11), pp. 827–833.
van de Veerdonk, M. C. , Dusoswa, S. A. , Marcus, J. T. , Bogaard, H. J. , Spruijt, O. , Kind, T. , Westerhof, N. , and Vonk-Noordegraaf, A. , 2014, “ The Importance of Trabecular Hypertrophy in Right Ventricular Adaptation to Chronic Pressure Overload,” Int. J. Cardiovasc. Imaging, 30(2), pp. 357–365. [PubMed]
Halaney, D. L. , Sanyal, A. , Nafissi, N. A. , Escobedo, D. , Goros, M. , Michalek, J. , Acevedo, P. J. , Pérez, W. , Patricia Escobar, G. , Feldman, M. D. , and Han, H.-C. , 2017, “ The Effect of Trabeculae Carneae on Left Ventricular Diastolic Compliance: Improvement in Compliance With Trabecular Cutting,” ASME J. Biomech. Eng., 139(3), p. 031012.
Moorman, A. , Webb, S. , Brown, N. A. , Lamers, W. , and Anderson, R. H. , 2003, “ Development of the Heart: (1) Formation of the Cardiac Chambers and Arterial Trunks,” Heart, 89(7), pp. 806–814. [PubMed]
Captur, G. , Wilson, R. , Bennett, M. F. , Luxan, G. , Nasis, A. , de la Pompa, J. L. , Moon, J. C. , and Mohun, T. J. , 2016, “ Morphogenesis of Myocardial Trabeculae in the Mouse Embryo,” J. Anat., 229(2), pp. 314–325. [PubMed]
Bartram, U. , Bauer, J. , and Schranz, D. , 2007, “ Primary Noncompaction of the Ventricular Myocardium From the Morphogenetic Standpoint,” Pediatr. Cardiol., 28(5), pp. 325–332. [PubMed]
Janik, M. , Cham, M. D. , Ross, M. I. , Wang, Y. , Codella, N. , Min, J. K. , Prince, M. R. , Manoushagian, S. , Okin, P. M. , Devereux, R. B. , and Weinsaft, J. W. , 2008, “ Effects of Papillary Muscles and Trabeculae on Left Ventricular Quantification: Increased Impact of Methodological Variability in Patients With Left Ventricular Hypertrophy,” J. Hypertens., 26(8), pp. 1677–1685. [PubMed]
Jacquier, A. , Thuny, F. , Jop, B. , Giorgi, R. , Cohen, F. , Gaubert, J. Y. , Vidal, V. , Bartoli, J. M. , Habib, G. , and Moulin, G. , 2010, “ Measurement of Trabeculated Left Ventricular Mass Using Cardiac Magnetic Resonance Imaging in the Diagnosis of Left Ventricular Non-Compaction,” Eur. Heart J., 31(9), pp. 1098–1104. [PubMed]
Lin, L. Y. , Su, M. Y. , Pham, V. T. , Tran, T. T. , Wang, Y. H. , Tseng, W. Y. , Lo, M. T. , and Lin, J. L. , 2016, “ Endocardial Remodeling in Heart Failure Patients With Impaired and Preserved Left Ventricular Systolic Function—A Magnetic Resonance Image Study,” Sci. Rep., 6, p. 20868. [PubMed]
Gati, S. , Chandra, N. , Bennett, R. L. , Reed, M. , Kervio, G. , Panoulas, V. F. , Ghani, S. , Sheikh, N. , Zaidi, A. , Wilson, M. , Papadakis, M. , Carre, F. , and Sharma, S. , 2013, “ Increased Left Ventricular Trabeculation in Highly Trained Athletes: Do We Need More Stringent Criteria for the Diagnosis of Left Ventricular Non-Compaction in Athletes?,” Heart, 99(6), pp. 401–408. [PubMed]
Gati, S. , Papadakis, M. , Papamichael, N. D. , Zaidi, A. , Sheikh, N. , Reed, M. , Sharma, R. , Thilaganathan, B. , and Sharma, S. , 2014, “ Reversible de Novo Left Ventricular Trabeculations in Pregnant Women: Implications for the Diagnosis of Left Ventricular Noncompaction in Low-Risk Populations,” Circulation, 130(6), pp. 475–483. [PubMed]
Demer, L. L. , and Yin, F. C. , 1983, “ Passive Biaxial Mechanical Properties of Isolated Canine Myocardium,” J. Physiol., 339(1), pp. 615–630. [PubMed]
Sacks, M. S. , and Chuong, C. J. , 1993, “ Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium,” ASME J. Biomech. Eng., 115(2), pp. 202–205.
Kang, T. , Humphrey, J. D. , and Yin, F. C. , 1996, “ Comparison of Biaxial Mechanical Properties of Excised Endocardium and Epicardium,” Am. J. Physiol.: Heart Circ. Physiol., 270(6), pp. H2169–H2176.
Javani, S. , Gordon, M. , and Azadani, A. N. , 2016, “ Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model,” Ann. Biomed. Eng., 44(11), pp. 3266–3283. [PubMed]
Okamoto, R. J. , Moulton, M. J. , Peterson, S. J. , Li, D. , Pasque, M. K. , and Guccione, J. M. , 2000, “ Epicardial Suction: A New Approach to Mechanical Testing of the Passive Ventricular Wall,” ASME J. Biomech. Eng., 122(5), pp. 479–487.
Wang, B. , Tedder, M. E. , Perez, C. E. , Wang, G. , de Jongh Curry, A. L. , To, F. , Elder, S. H. , Williams, L. N. , Simionescu, D. T. , and Liao, J. , 2012, “ Structural and Biomechanical Characterizations of Porcine Myocardial Extracellular Matrix,” J. Mater. Sci. Mater. Med., 23(8), pp. 1835–1847. [PubMed]
Han, J. C. , Taberner, A. J. , Kirton, R. S. , Nielsen, P. M. , Archer, R. , Kim, N. , and Loiselle, D. S. , 2011, “ Radius-Dependent Decline of Performance in Isolated Cardiac Muscle Does Not Reflect Inadequacy of Diffusive Oxygen Supply,” Am. J. Physiol.: Heart Circ. Physiol., 300(4), pp. H1222–H1236. [PubMed]
Haizlip, K. M. , Bupha-Intr, T. , Biesiadecki, B. J. , and Janssen, P. M. , 2012, “ Effects of Increased Preload on the Force-Frequency Response and Contractile Kinetics in Early Stages of Cardiac Muscle Hypertrophy,” Am. J. Physiol.: Heart Circ. Physiol., 302(12), pp. H2509–H2517. [PubMed]
Yin, F. C. , Spurgeon, H. A. , Weisfeldt, M. L. , and Lakatta, E. G. , 1980, “ Mechanical Properties of Myocardium From Hypertrophied Rat Hearts. A Comparison Between Hypertrophy Induced By Senescence and By Aortic Banding,” Circ. Res., 46(2), pp. 292–300. [PubMed]
Pinto, J. G. , and Fung, Y. C. , 1973, “ Mechanical Properties of the Heart Muscle in the Passive State,” J. Biomech., 6(6), pp. 597–616. [PubMed]
Han, J. C. , Taberner, A. J. , Nielsen, P. M. , and Loiselle, D. S. , 2013, “ Interventricular Comparison of the Energetics of Contraction of Trabeculae Carneae Isolated From the Rat Heart,” J. Physiol., 591(3), pp. 701–717. [PubMed]
Weisfeldt, M. L. , Loeven, W. A. , and Shock, N. W. , 1971, “ Resting and Active Mechanical Properties of Trabeculae Carneae From Aged Male Rats,” Am. J. Physiol., 220(6), pp. 1921–1927. [PubMed]
Feldman, M. D. , Copelas, L. , Gwathmey, J. K. , Phillips, P. , Warren, S. E. , Schoen, F. J. , Grossman, W. , and Morgan, J. P. , 1987, “ Deficient Production of Cyclic AMP: Pharmacologic Evidence of an Important Cause of Contractile Dysfunction in Patients With End-Stage Heart Failure,” Circulation, 75(2), pp. 331–339. [PubMed]
Gruver, E. J. , Morgan, J. P. , Stambler, B. S. , and Gwathmey, J. K. , 1994, “ Uniformity of Calcium Channel Number and Isometric Contraction in Human Right and Left Ventricular Myocardium,” Basic Res. Cardiol., 89(2), pp. 139–148. [PubMed]
Appell, H. J. , and Stang-Voss, C. , 1980, “ A Peculiar Fibrillar Pattern in the Myocardial Cells of Trabeculae Carneae in the Right Ventricle of the Rat, Mouse, and Rabbit,” Cell Tissue Res., 208(1), pp. 165–168. [PubMed]
Sands, G. , Goo, S. , Gerneke, D. , LeGrice, I. , and Loiselle, D. , 2011, “ The Collagenous Microstructure of Cardiac Ventricular Trabeculae Carneae,” J. Struct. Biol., 173(1), pp. 110–116. [PubMed]
Sommer, G. , Schriefl, A. J. , Andra, M. , Sacherer, M. , Viertler, C. , Wolinski, H. , and Holzapfel, G. A. , 2015, “ Biomechanical Properties and Microstructure of Human Ventricular Myocardium,” Acta Biomater., 24, pp. 172–192. [PubMed]
Voorhees, A. P. , DeLeon-Pennell, K. Y. , Ma, Y. , Halade, G. V. , Yabluchanskiy, A. , Iyer, R. P. , Flynn, E. , Cates, C. A. , Lindsey, M. L. , and Han, H. C. , 2015, “ Building a Better Infarct: Modulation of Collagen Cross-Linking to Increase Infarct Stiffness and Reduce Left Ventricular Dilation Post-Myocardial Infarction,” J. Mol. Cell. Cardiol., 85, pp. 229–239. [PubMed]
Grimes, K. M. , Voorhees, A. , Chiao, Y. A. , Han, H. C. , Lindsey, M. L. , and Buffenstein, R. , 2014, “ Cardiac Function of the Naked Mole-Rat: Ecophysiological Responses to Working Underground,” Am. J. Physiol.: Heart Circ. Physiol., 306(5), pp. H730–H737. [PubMed]
Eilaghi, A. , Flanagan, J. G. , Brodland, G. W. , and Ethier, C. R. , 2009, “ Strain Uniformity in Biaxial Specimens is Highly Sensitive to Attachment Details,” ASME J. Biomech. Eng., 131(9), p. 091003.
Fomovsky, G. M. , and Holmes, J. W. , 2010, “ Evolution of Scar Structure, Mechanics, and Ventricular Function After Myocardial Infarction in the Rat,” Am. J. Physiol.: Heart Circ. Physiol., 298(1), pp. H221–H228. [PubMed]
Kirton, R. S. , Taberner, A. J. , Nielsen, P. M. , Young, A. A. , and Loiselle, D. S. , 2005, “ Effects of BDM, [Ca2+]o, and Temperature on the Dynamic Stiffness of Quiescent Cardiac Trabeculae From Rat,” Am. J. Physiol.: Heart Circ. Physiol., 288(4), pp. H1662–H1667. [PubMed]
Fereidoonnezhad, B. , Naghdabadi, R. , and Holzapfel, G. A. , 2016, “ Stress Softening and Permanent Deformation in Human Aortas: Continuum and Computational Modeling With Application to Arterial Clamping,” J. Mech. Behav. Biomed. Mater., 61, pp. 600–616. [PubMed]
Urheim, S. , Edvardsen, T. , Torp, H. , Angelsen, B. , and Smiseth, O. A. , 2000, “ Myocardial Strain by Doppler Echocardiography: Validation of a New Method to Quantify Regional Myocardial Function,” Circulation, 102(10), pp. 1158–1164. [PubMed]
Halaney, D. L. , Acevedo, P. J. , Pérez, W. , Sanyal, A. , Han, H.-C. , and Feldman, M. , 2015, “ The Importance of Trabeculae Carneae for Left Ventricular Diastolic Compliance: Improvement in Compliance With Trabecular Cutting,” J. Am. Coll. Cardiol., 65(Suppl. 10), p. A968.
Sommer, G. , Haspinger, D. , Andra, M. , Sacherer, M. , Viertler, C. , Regitnig, P. , and Holzapfel, G. A. , 2015, “ Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium,” Ann. Biomed. Eng., 43(10), pp. 2334–2348. [PubMed]
Kindberg, K. , Haraldsson, H. , Sigfridsson, A. , Engvall, J. , Ingels , N. B., Jr. , Ebbers, T. , and Karlsson, M. , 2012, “ Myocardial Strains From 3D Displacement Encoded Magnetic Resonance Imaging,” BMC Med. Imaging, 12, p. 9. [PubMed]
Kovalova, S. , Necas, J. , and Vespalec, J. , 2006, “ What is a ‘Normal’ Right Ventricle?,” Eur. J. Echocardiography, 7(4), pp. 293–297.
Holzapfel, G. A. , and Ogden, R. W. , 2009, “ Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 367(1902), pp. 3445–3475.
Holzapfel, G. , and Fereidoonnezhad, B. , 2017, “ Modeling of Damage in Soft Biological Tissues,” Biomechanics of Living Organs, Y. Payan and J. Ohayon, eds., Academic Press, Oxford, UK, Chap. 5.
Voorhees, A. P. , and Han, H. C. , 2015, “ Biomechanics of Cardiac Function,” Compr. Physiol., 5(4), pp. 1623–1644. [PubMed]
Fatemifar, F. , and Han, H.-C. , 2016, “ Effect of Axial Stretch on Lumen Collapse of Arteries,” ASME J. Biomech. Eng., 138(12), p. 124503.
Wang, C. , Garcia, M. , Lu, X. , Lanir, Y. , and Kassab, G. S. , 2006, “ Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model,” Am. J. Physiol.: Heart Circ. Physiol., 291(3), pp. H1200–H1209. [PubMed]
Lin, J. , Lopez, E. F. , Jin, Y. , Van Remmen, H. , Bauch, T. , Han, H. C. , and Lindsey, M. L. , 2008, “ Age-Related Cardiac Muscle Sarcopenia: Combining Experimental and Mathematical Modeling to Identify Mechanisms,” Exp. Gerontol., 43(4), pp. 296–306. [PubMed]
Zuo, K. , Pham, T. , Li, K. , Martin, C. , He, Z. , and Sun, W. , 2016, “ Characterization of Biomechanical Properties of Aged Human and Ovine Mitral Valve Chordae Tendineae,” J. Mech. Behav. Biomed. Mater., 62, pp. 607–618. [PubMed]
Pham, T. , and Sun, W. , 2014, “ Material Properties of Aged Human Mitral Valve Leaflets,” J. Biomed. Mater. Res. Part A, 102(8), pp. 2692–2703.
Azadani, A. N. , Chitsaz, S. , Matthews, P. B. , Jaussaud, N. , Leung, J. , Wisneski, A. , Ge, L. , and Tseng, E. E. , 2012, “ Biomechanical Comparison of Human Pulmonary and Aortic Roots,” Eur. J. Cardio Thorac. Surg., 41(5), pp. 1111–1116.
Zile, M. R. , Baicu, C. F. , Ikonomidis, J. S. , Stroud, R. E. , Nietert, P. J. , Bradshaw, A. D. , Slater, R. , Palmer, B. M. , Van Buren, P. , Meyer, M. , Redfield, M. M. , Bull, D. A. , Granzier, H. L. , and LeWinter, M. M. , 2015, “ Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction: Contributions of Collagen and Titin,” Circulation, 131(14), pp. 1247–1259. [PubMed]
Chaturvedi, R. R. , Herron, T. , Simmons, R. , Shore, D. , Kumar, P. , Sethia, B. , Chua, F. , Vassiliadis, E. , and Kentish, J. C. , 2010, “ Passive Stiffness of Myocardium From Congenital Heart Disease and Implications for Diastole,” Circulation, 121(8), pp. 979–988. [PubMed]
Conrad, C. H. , Brooks, W. W. , Hayes, J. A. , Sen, S. , Robinson, K. G. , and Bing, O. H. L. , 1995, “ Myocardial Fibrosis and Stiffness With Hypertrophy and Heart Failure in the Spontaneously Hypertensive Rat,” Circulation, 91(1), pp. 161–170. [PubMed]
Pantazis, A. , Vischer, A. S. , Perez-Tome, M. C. , and Castelletti, S. , 2015, “ Diagnosis and Management of Hypertrophic Cardiomyopathy,” Echo Res. Pract., 2(1), pp. R45–R53. [PubMed]
Elliott, P. M. , Anastasakis, A. , Borger, M. A. , Borggrefe, M. , Cecchi, F. , Charron, P. , Hagege, A. A. , Lafont, A. , Limongelli, G. , Mahrholdt, H. , McKenna, W. J. , Mogensen, J. , Nihoyannopoulos, P. , Nistri, S. , Pieper, P. G. , Pieske, B. , Rapezzi, C. , Rutten, F. H. , Tillmanns, C. , and Watkins, H. , 2014, “ 2014 ESC Guidelines on Diagnosis and Management of Hypertrophic Cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC),” Eur. Heart J., 35(39), pp. 2733–2779. [PubMed]
Luo, C. , Ramachandran, D. , Ware, D. L. , Ma, T. S. , and Clark, J. W. , 2011, “ Modeling Left Ventricular Diastolic Dysfunction: Classification and Key Indicators,” Theor. Biol. Medical Modell., 8(1), p. 14.
Zuin, M. , Rigatelli, G. , Faggian, G. , and Roncon, L. , 2016, “ Mathematics and Cardiovascular Interventions Role of the Finite Element Modeling in Clinical Decision Making,” JACC Cardiovasc. Interventions, 9(5), pp. 507–508.
Walker, L. A. , and Buttrick, P. M. , 2013, “ The Right Ventricle: Biologic Insights and Response to Disease—Updated,” Curr. Cardiol. Rev., 9(1), pp. 73–81. [PubMed]
Waldman, L. K. , Nosan, D. , Villarreal, F. , and Covell, J. W. , 1988, “ Relation Between Transmural Deformation and Local Myofiber Direction in Canine Left Ventricle,” Circ. Res., 63(3), pp. 550–562. [PubMed]
Lakatta, E. G. , 2002, “ Age-Associated Cardiovascular Changes in Health: Impact on Cardiovascular Disease in Older Persons,” Heart Failure Rev., 7(1), pp. 29–49.
Yabluchanskiy, A. , Ma, Y. , Chiao, Y. A. , Lopez, E. F. , Voorhees, A. P. , Toba, H. , Hall, M. E. , Han, H.-C. , Lindsey, M. L. , and Jin, Y.-F. , 2014, “ Cardiac Aging is Initiated by Matrix Metalloproteinase-9-Mediated Endothelial Dysfunction,” Am. J. Physiol.: Heart Circ. Physiol., 306(10), pp. H1398–H1407. [PubMed]
Olivetti, G. , Melissari, M. , Capasso, J. M. , and Anversa, P. , 1991, “ Cardiomyopathy of the Aging Human Heart. Myocyte Loss and Reactive Cellular Hypertrophy,” Circ. Res., 68(6), pp. 1560–1568. [PubMed]
Bishop, S. P. , Oparil, S. , Reynolds, R. H. , and Drummond, J. L. , 1979, “ Regional Myocyte Size in Normotensive and Spontaneously Hypertensive Rats,” Hypertension, 1(4), pp. 378–383. [PubMed]
Bhuiyan, T. , and Maurer, M. S. , 2011, “ Heart Failure With Preserved Ejection Fraction: Persistent Diagnosis, Therapeutic Enigma,” Curr. Cardiovasc. Risk Rep., 5(5), pp. 440–449. [PubMed]
Voorhees, A. P. , and Han, H. C. , 2014, “ A Model to Determine the Effect of Collagen Fiber Alignment on Heart Function Post Myocardial Infarction,” Theor. Biol. Med. Modell., 11, p. 6.
van Suylen, R. J. , van Bekkum, E. E. , Boersma, H. , de Kok, L. B. , Balk, A. H. , Bos, E. , and Bosman, F. T. , 1996, “ Collagen Content and Distribution in the Normal and Transplanted Human Heart: A Postmortem Quantitative Light Microscopic Analysis,” Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 5(2), pp. 61–68.
Lenkiewicz, J. E. , Davies, M. J. , and Rosen, D. , 1972, “ Collagen in Human Myocardium as a Function of Age,” Cardiovasc. Res., 6(5), pp. 549–555. [PubMed]
Fomovsky, G. M. , Thomopoulos, S. , and Holmes, J. W. , 2010, “ Contribution of Extracellular Matrix to the Mechanical Properties of the Heart,” J. Mol. Cell. Cardiol., 48(3), pp. 490–496. [PubMed]
Mujumdar, V. S. , and Tyagi, S. C. , 1999, “ Temporal Regulation of Extracellular Matrix Components in Transition From Compensatory Hypertrophy to Decompensatory Heart Failure,” J. Hypertens., 17(2), pp. 261–270. [PubMed]
Holzaphel, G. A. , and Ogden, R. W. , 2009, “ On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids—A Continuum Mechanical Framework,” Math. Mech. Solids, 14(5), pp. 474–489.
Guccione, J. M. , Costa, K. D. , and McCulloch, A. D. , 1995, “ Finite Element Stress Analysis of Left Ventricular Mechanics in the Beating Dog Heart,” J. Biomech., 28(10), pp. 1167–1177. [PubMed]

Figures

Grahic Jump Location
Fig. 1

Photograph of a human heart opened by a frontal incision illustrating the trabeculae carneae and papillary muscles

Grahic Jump Location
Fig. 2

(a) Trabeculae carneae isolated from human right and left ventricles, (b) specimen mounted using four rakes for biaxial testing, and (c) specimen mounted using two rakes for uniaxial testing

Grahic Jump Location
Fig. 3

Comparison of average Cauchy stress versus stretch ratio curves: (a) Left ventricle myocardium (LVMY) and papillary muscles (LVPM) under equi-biaxial stretch in fiber (F) and cross-fiber (CF) directions (n = 9), (b) right ventricle myocardium (RVMY) and papillary muscles (RVPM) under equi-biaxial stretch in fiber (F) and cross-fiber (CF) directions (n = 9), (c) left ventricle trabeculae carneae (LVT) and right ventricle trabeculae carneae (RVT) under uniaxial stretch (n = 9), and (d) left ventricle trabeculae carneae (LVT, n = 12) and myocardium (LVMY-uniaxial, n = 5) under uniaxial stretch and equi-biaxial stretch (LVMYF, n = 9)

Grahic Jump Location
Fig. 4

Representative stress–stretch ratio curves fitted with Fung strain energy function for (a) left ventricle trabeculae (LVT) under uniaxial stretch and (b) left ventricle myocardium (LVMY) under equi-biaxial stretch

Grahic Jump Location
Fig. 5

Comparison of Secant modulus SM1 at 5 KPa for (a) left ventricle myocardium (LVMY) and papillary muscles (LVPM), right ventricle myocardium (RVMY), and papillary muscles (RVPM) under equi-biaxial stretch (n = 9) and (b) left ventricle trabeculae carneae (LVT, n = 12) and myocardium strip (LVMY-Uniaxial, n = 5), right ventricle trabeculae carneae (RVT, n = 9), under uniaxial stretch. Values are Mean ± SD. No significant difference is seen.

Grahic Jump Location
Fig. 6

Comparison of Secant modulus SM2 at 15% stretch ratio for (a) left ventricle myocardium (LVMY) and papillary muscles (LVPM), right ventricle myocardium (RVMY) and papillary muscles (RVPM) under equi-biaxial stretch (n = 9). (**) and (*) indicate (p < 0.01) and (p < 0.05) versus LVMY, respectively, and (b) left ventricle trabeculae carneae (LVT, n = 12) and myocardium strip (LVMY-Uniaxial, n = 5), right ventricle trabeculae carneae (RVT, n = 9), under uniaxial stretch. (**) indicates (p < 0.01) versus LVT. Values are Mean±SD.

Grahic Jump Location
Fig. 7

Comparison of the equi-biaxial tangent modulus (TM) ratio (TM in fiber direction/TM in cross-fiber direction) for left ventricle myocardium (LVMY) and papillary muscles (LVPM), right ventricle myocardium (RVMY) and papillary muscles (RVPM) (n = 9). (**) and (##) indicate (p < 0.01) versus RVPM and RVMY, respectively. Values are Mean±SD.

Grahic Jump Location
Fig. 8

Hematoxylin and Eosin staining of (a) left ventricle myocardium (LVMY), (b) left ventricle papillary muscles (LVPM), (c) left ventricle trabeculae carneae (LVT) of a human heart at 40× magnification and Picrosirius red staining of (d) left ventricle myocardium (LVMY), (e) left ventricle papillary muscles (LVPM), and (f) left ventricle trabeculae carneae (LVT) of a human heart at 20× magnification

Grahic Jump Location
Fig. 9

Comparison of (a) nuclei number, and (b) inter-myocyte space (% area) in human left ventricle myocardium (LVMY), papillary muscles (LVPM), trabeculae carneae (LVT), and right ventricle myocardium (RVMY), papillary muscles (RVPM), trabeculae carneae (RVT) (n = 4). (**) and (*) indicate (p < 0.01) and (p < 0.05) versus LVPM, respectively. Values are mean±SD.

Grahic Jump Location
Fig. 10

Comparison of the myocyte geometry indices (a) myocyte cross-sectional area, (b) myocyte diameter, and (c) myocyte aspect ratio in human left ventricle myocardium (LVMY), papillary muscles (LVPM), trabeculae carneae (LVT), and right ventricle myocardium (RVMY), papillary muscles (RVPM), trabeculae carneae (RVT) (n = 4). (*) indicates (p < 0.05) versus LVT. Values are mean±SD.

Grahic Jump Location
Fig. 11

Comparison of collagen content (% area) in human left ventricle myocardium (LVMY), papillary muscles (LVPM), trabeculae carneae (LVT), and right ventricle myocardium (RVMY), papillary muscles (RVPM), trabeculae carneae (RVT) (n = 4). (*) indicates (p < 0.05) versus LVMY. Values are mean±SD.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In