0
Research Papers

Diffusion-Tensor Imaging Versus Digitization in Reconstructing the Masseter Architecture

[+] Author and Article Information
Cristina Falcinelli

Orthopaedic Biomechanics Laboratory,
Sunnybrook Research Institute,
2075 Bayview Avenue,
Toronto, ON M4N 3M5, Canada
e-mails: cristina.falcinelli@sunnybrook.ca; c.falcinelli@unicampus.it

Zhi Li

Musculoskeletal Anatomy Laboratory,
Division of Anatomy,
Faculty of Medicine,
University of Toronto,
1 King's College Circle, Room 1158,
Toronto, ON M5S 1A8, Canada
e-mail: jameszhi.li@mail.utoronto.ca

Wilfred W. Lam

Physical Sciences,
Sunnybrook Research Institute,
Room S6 05 2075 Bayview Avenue,
Toronto, ON M4N 3M5, Canada
e-mail: lamw@sri.utoronto.ca

Greg J. Stanisz

Physical Sciences,
Sunnybrook Research Institute,
Room S6 72 2075 Bayview Avenue,
Toronto, ON M4N 3M5, Canada
e-mail: stanisz@sri.utoronto.ca

Anne M. Agur

Musculoskeletal Anatomy Laboratory,
Division of Anatomy,
Faculty of Medicine,
University of Toronto,
1 King's College Circle, Room 1158,
Toronto, ON M5S 1A8, Canada
e-mail: anne.agur@utoronto.ca

Cari M. Whyne

Orthopaedic Biomechanics Laboratory,
Sunnybrook Research Institute,
Room S6 20 2075 Bayview Avenue,
Toronto, ON M4N 3M5, Canada
e-mail: cwhyne@sri.utoronto.ca

1Present address: Department of Engineering, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy.

Manuscript received January 9, 2018; final manuscript received September 19, 2018; published online October 4, 2018. Assoc. Editor: Anna Pandolfi.

J Biomech Eng 140(11), 111010 (Oct 04, 2018) (6 pages) Paper No: BIO-18-1014; doi: 10.1115/1.4041541 History: Received January 09, 2018; Revised September 19, 2018

Accurate characterization of the craniomaxillofacial (CMF) skeleton using finite element (FE) modeling requires representation of complex geometries, heterogeneous material distributions, and physiological loading. Musculature in CMF FE models are often modeled with simple link elements that do not account for fiber bundles (FBs) and their differential activation. Magnetic resonance (MR) diffusion-tensor imaging (DTI) enables reconstruction of the three-dimensional (3D) FB arrangement within a muscle. However, 3D quantitative validation of DTI-generated FBs is limited. This study compares 3D FB arrangement in terms of pennation angle (PA) and fiber bundle length (FBL) generated through DTI in a human masseter to manual digitization. CT, MR-proton density, and MR-DTI images were acquired from a single cadaveric specimen. Bone and masseter surfaces were reconstructed from CT and MR-proton density images, respectively. PA and FBL were estimated from FBs reconstructed from MR-DTI images using a streamline tracking (STT) algorithm (n = 193) and FBs identified through manual digitization (n = 181) and compared using the Mann–Whitney test. DTI-derived PAs did not differ from the digitized data (p = 0.411), suggesting that MR-DTI can be used to simulate FB orientation and the directionality of transmitted forces. Conversely, a significant difference was observed in FBL (p < 0.01) which may have resulted due to the tractography stopping criterion leading to early tract termination and greater length variability. Overall, this study demonstrated that DTI can yield muscle FB orientation data suitable to representative directionality of physiologic muscle loading in patient-specific CMF FE modeling.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cioffi, I. , Gallo, L. M. , Palla, S. , Erni, S. , and Farella, M. , 2012, “ Macroscopic Analysis of Human Masseter Compartments Assessed by Magnetic Resonance Imaging,” Cells Tissues Organs, 195(5), pp. 465–472. [CrossRef] [PubMed]
Röhrle, O. , and Pullan, A. J. , 2007, “ Three-Dimensional Finite Element Modelling of Muscle Forces During Mastication,” J. Biomech., 40(15), pp. 3363–3372. [CrossRef] [PubMed]
Kim, S. Y. , Boynton, E. L. , Ravichandiran, K. , Fung, L. Y. , Bleakney, R. , and Agur, A. M. , 2007, “ Three-Dimensional Study of the Musculotendinous Architecture of Supraspinatus and Its Functional Correlations,” Clin. Anat., 20(6), pp. 648–655. [CrossRef] [PubMed]
Fattah, A. Y. , Ravichandiran, K. , Zuker, R. M. , and Agur, A. M. R. , 2013, “ A Three-Dimensional Study of the Musculotendinous and Neurovascular Architecture of the Gracilis Muscle: Application to Functional Muscle Transfer,” J. Plast. Reconstr. Aesthetic Surg., 66(9), pp. 1230–1237. [CrossRef]
Li, Z. , Mogk, J. P. M. , Lee, D. , Bibliowicz, J. , and Agur, A. M. , 2015, “ Development of an Architecturally Comprehensive Database of Forearm Flexors and Extensors From a Single Cadaveric Specimen,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 3(1), pp. 3–12. [CrossRef]
Lee, D. , Li, Z. , Sohail, Q. Z. , Jackson, K. , Fiume, E. , and Agur, A. , 2015, “ A Three-Dimensional Approach to Pennation Angle Estimation for Human Skeletal Muscle,” Comput. Methods Biomech. Biomed. Eng., 18(13), pp. 1474–1484. [CrossRef]
Cleveland, G. , Chang, D. C. , Hazlewood, C. F. , and Rorschach, H. E. , 1976, “ Nuclear Magnetic Resonance Measurement of Skeletal Muscle. Anisotropy of the Diffusion Coefficient of the Intracellular Water,” Biophys. J., 16(9), pp. 1043–1053. [CrossRef] [PubMed]
Damon, B. M. , Ding, Z. , Anderson, A. W. , Freyer, A. S. , and Gore, J. C. , 2002, “ Validation of Diffusion Tensor MRI-Based Muscle Fiber Tracking,” Magn. Reson. Med., 48(1), pp. 97–104. [CrossRef] [PubMed]
Blemker, S. S. , Asakawa, D. S. , Gold, G. E. , and Delp, S. L. , 2007, “ Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities,” J. Magn. Reson. Imaging, 25(2), pp. 441–451. [CrossRef] [PubMed]
Lansdown, D. A. , Ding, Z. , Wadington, M. , Hornberger, J. L. , and Damon, B. M. , 2007, “ Quantative Diffusion Tensor MRI-Based Fiber Tracking Human Skeletal Muscle,” J. Appl. Physiol., 2675(2), pp. 673–681. [CrossRef]
Heemskerk, A. M. , Sinha, T. K. , Wilson, K. J. , Ding, Z. , and Damon, B. M. , 2010, “ Repeatability of DTI-Based Skeletal Muscle Fiber Tracking,” NMR Biomed., 23(3), pp. 294–303. [PubMed]
Sinha, U. , Sinha, S. , Hodgson, J. A. , and Edgerton, R. V. , 2011, “ Human Soleus Muscle Architecture at Different Ankle Joint Angles From Magnetic Resonance Diffusion Tensor Imaging,” J. Appl. Physiol., 110(3), pp. 807–819. [CrossRef] [PubMed]
Damon, B. M. , Heemskerk, A. M. , and Ding, Z. , 2012, “ Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters,” Magn. Reson. Imaging, 30(5), pp. 589–600. [CrossRef] [PubMed]
Heemskerk, A. M. , Strijkers, G. J. , Vilanova, A. , Drost, M. R. , and Nicolay, K. , 2005, “ Determination of Mouse Skeletal Muscle Architecture Using Three-Dimensional Diffusion Tensor Imaging,” Magn. Reson. Med., 53(6), pp. 1333–1340. [CrossRef] [PubMed]
Schenk, P. , Siebert, T. , Hiepe, P. , Güllmar, D. , Reichenbach, J. R. , Wick, C. , Blickhan, R. , and Böl, M. , 2013, “ Determination of Three-Dimensional Muscle Architectures: Validation of the DTI-Based Fiber Tractography Method by Manual Digitization,” J. Anat., 223(1), pp. 61–68. [CrossRef] [PubMed]
Froeling, M. , Nederveen, A. J. , Heijtel, D. F. R. , Lataster, A. , Bos, C. , Nicolay, K. , Maas, M. , Drost, M. R. , and Strijkers, G. J. , 2012, “ Diffusion-Tensor MRI Reveals the Complex Muscle Architecture of the Human Forearm,” J. Magn. Reson. Imaging, 36(1), pp. 237–248. [CrossRef] [PubMed]
Weijs, W. A. , and Hillen, B. , 1985, “ Physiological Cross-Section of the Human Jaw Muscles,” Acta Anat. (Basel), 121(1), pp. 31–35. [CrossRef] [PubMed]
Van Eijden, T. M. , Korfage, J. A. , and Brugman, P. , 1997, “ Architecture of the Human Jaw-Closing and Jaw-Opening Muscles,” Anat. Rec., 248(3), pp. 464–474. [CrossRef] [PubMed]
Jones, D. K. , Horsfield, M. A. , and Simmons, A. , 1999, “ Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging,” Magn. Reson. Med., 42(3), pp. 515–525. [CrossRef] [PubMed]
Buades, A. , Coll, B. , and Morel, J.-M. , 2005, “ A Review of Image Denoising Algorithms, With a New One,” SIAM J. Multiscale Model. Simul. A SIAM Interdisci-Plinary J., 4(2), pp. 490–530. [CrossRef]
Basser, P. J. , Pajevic, S. , Pierpaoli, C. , Duda, J. , and Aldroubi, A. , 2000, “ In Vivo Fiber Tractography Using DT-MRI Data,” Magn. Reson. Med., 44(4), pp. 625–632. [CrossRef] [PubMed]
Oudeman, J. , Mazzoli, V. , Marra, M. A. M. A. , Nicolay, K. , Maas, M. , Verdonschot, N. , Sprengers, A. M. A. M. , Nederveen, A. J. A. J. , Strijkers, G. J. G. J. , and Froeling, M. , 2016, “ A Novel Diffusion‐Tensor MRI Approach for Skeletal Muscle Fascicle Length Measurements,” Physiol. Rep., 4(24), p. e13012. [CrossRef] [PubMed]
Gans, C. , and de Vree, F. , 1987, “ Functional Bases of Fibre Length and Angulation in Muscle,” J. Morphol., 192(1), pp. 63–85. [CrossRef] [PubMed]
Van Donkelaar, C. C. , Kretzers, L. J. G. , Bovendeerd, P. H. M. , Lataster, L. M. A. , Nicolay, K. , Janssen, J. D. , and Drost, M. R. , 1999, “ Diffusion Tensor Imaging in Biomechanical Studies of Skeletal Muscle Function,” J. Anat., 194(1), pp. 79–88. [CrossRef] [PubMed]
Bolsterlee, B. , D'Souza, A. , Gandevia, S. C. , and Herbert, R. D. , 2017, “ How Does Passive Lengthening Change the Architecture of the Human Medial Gastrocnemius Muscle?,” J. Appl. Physiol., 122(4), pp. 727–738. [CrossRef] [PubMed]
Heemskerk, A. M. , Sinha, T. K. , Wilson, K. J. , Ding, Z. , and Damon, B. M. , 2009, “ Quantitative Assessment of DTI-Based Muscle Fiber Tracking and Optimal Tracking Parameters,” Magn. Reson. Med., 61(2), pp. 467–472. [CrossRef] [PubMed]
Bolsterlee, B. , Veeger, H. E. J. , Van Der Helm, F. C. T. , Gandevia, S. C. , and Herbert, R. D. , 2015, “ Comparison of Measurements of Medial Gastrocnemius Architectural Parameters From Ultrasound and Diffusion Tensor Images,” J. Biomech., 48(6), pp. 1133–1140. [CrossRef] [PubMed]
Rane, S. , and Duong, T. Q. , 2011, “ Comparison of In Vivo and Ex Vivo Diffusion Tensor Imaging in Rhesus Macaques at Short and Long Diffusion Times,” Open Neuroimag. J., 5, pp. 172–178. [CrossRef] [PubMed]
D'Arceuil, H. , and de Crespigny, A. , 2007, “ The Effects of Brain Tissue Decomposition on Diffusion Tensor Imaging and Tractography,” Neuroimage, 36(1), pp. 64–68. [CrossRef] [PubMed]
Stikov, N. , Perry, L. M. , Mezer, A. , Rykhlevskaia, E. , Wandell, B. A. , Pauly, J. M. , and Dougherty, R. F. , 2011, “ Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure,” Neuroimage, 54(2), pp. 1112–1121. [CrossRef] [PubMed]
Aherne, W. , Ayyar, D. R. , Clarke, P. A. , and Walton, J. N. , 1971, “ Muscle Fibre Size in Normal Infants, Children and Adolescents. An Autopsy Study,” J. Neurol. Sci., 14(2), pp. 171–182. [CrossRef] [PubMed]
Zhi, L. , Ebrahimi, E. , Falcinelli, C. , and Agur, A. , 2017, “ Comparison of the Musculoaponeurotic Architecture of Masseter Muscle of an Infant and Adult,” Clin. Anat., 30(8), pp. 1118–1145. [CrossRef]
Damon, B. M. , 2008, “ Effects of Image Noise in Muscle DT-MRI Assessed Using Numerical Simulations,” Magn. Reson. Med., 60(4), pp. 934–944. [CrossRef] [PubMed]
Lee, D. H. , Park, J. W. , Park, S. H. , and Hong, C. , 2015, “ Have You Ever Seen the Impact of Crossing Fiber in DTI?: Demonstration of the Corticospinal Tract Pathway,” PLoS One, 10(7), pp. 1–5.
Auriat, A. M. , Borich, M. R. , Snow, N. J. , Wadden, K. P. , and Boyd, L. A. , 2015, “ Comparing a Diffusion Tensor and Non-Tensor Approach to White Matter Fiber Tractography in Chronic Stroke,” NeuroImage Clin., 7, pp. 771–781. [CrossRef] [PubMed]
Behrens, T. E. J. , Berg, H. J. , Jbabdi, S. , Rushworth, M. F. S. , and Woolrich, M. W. , 2007, “ Probabilistic Diffusion Tractography With Multiple Fibre Orientations: What Can We Gain?,” Neuroimage, 34(1), pp. 144–155. [CrossRef] [PubMed]
Gaudy, J. F. , Zouaoui, A. , Bravetti, P. , Charrier, J. L. , and Guettaf, A. , 2000, “ Functional Organization of the Human Masseter Muscle,” Surg. Radiol. Anat., 22(3–4), pp. 181–190. [CrossRef] [PubMed]
Brunel, G. , El Haddioui, A. , Bravetti, P. , Zouaoui, A. , and Gaudy, J.-F. , 2003, “ General Organization of the Human Intra-Masseteric Aponeuroses: Changes With Ageing,” Surg. Radiol. Anat., 25(3–4), pp. 270–283. [CrossRef] [PubMed]
Kupczik, K. , Stark, H. , Mundry, R. , Neininger, F. T. , Heidlauf, T. , and Röhrle, O. , 2015, “ Reconstruction of Muscle Fascicle Architecture From Iodine-Enhanced microCT Images: A Combined Texture Mapping and Streamline Approach,” J. Theor. Biol., 382, pp. 34–43. [CrossRef] [PubMed]
Pakdel, A. , Fialkov, J. , and Whyne, C. M. , 2016, “ High Resolution Bone Material Property Assignment Yields Robust Subject Specific Finite Element Models of Complex Thin Bone Structures,” J. Biomech., 49(9), pp. 1454–1460. [CrossRef] [PubMed]
Goto, T. K. , Langenbach, G. E. J. , and Hannam, A. G. , 2001, “ Length Changes in the Human Masseter Muscle After Jaw Movement,” Anat. Rec., 262(3), pp. 293–300. [CrossRef] [PubMed]
Gans, C. , and Gaunt, A. S. , 1991, “ Muscle Architecture in Relation to Function,” J. Biomech., 24(Suppl. 1), pp. 53–65. [CrossRef] [PubMed]
McNab, J. A. , and Miller, K. L. , 2010, “ Steady-State Diffusion-Weighted Imaging: Theory, Acquisition and Analysis,” NMR Biomed., 23(7), pp. 781–793. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The image processing procedure: (i) registration of different imaging modalities; (ii) segmentation of the CT scan to reconstruct the craniofacial bone surface; (iii) segmentation of the MR structural image volume to extract the boundaries of the masseter; and (iv) FB pathways reconstructed through the DTI-based STT algorithm

Grahic Jump Location
Fig. 2

Manual digitization of the masseter FBs. The muscle specimen (on the left) and the FBs reconstructed through the digitization (on the right) are shown.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In