0
Research Papers

Forecasting Postflight Hip Fracture Probability Using Probabilistic Modeling

[+] Author and Article Information
Beth E. Lewandowski, Jerry G. Myers, Jr.

NASA John H. Glenn Research Center,
Low-gravity Exploration Technology Branch,
Cleveland, OH 44135

Manuscript received November 10, 2015; final manuscript received August 7, 2018; published online October 17, 2018. Assoc. Editor: Guy M. Genin. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.

J Biomech Eng 141(1), 011001 (Oct 17, 2018) (10 pages) Paper No: BIO-15-1574; doi: 10.1115/1.4041164 History: Received November 10, 2015; Revised August 07, 2018

A probabilistic model predicts hip fracture probability for postflight male astronauts during lateral fall scenarios from various heights. A biomechanical representation of the hip provides impact load. Correlations relate spaceflight bone mineral density (BMD) loss and postflight BMD recovery to bone strength (BS). Translations convert fracture risk index (FRI), the ratio of applied load (AL) to BS, to fracture probability. Parameter distributions capture uncertainty and Monte Carlo simulations provide probability outcomes. The fracture probability for a 1 m fall 0 days postflight is 15% greater than preflight and remains 6% greater than pre-flight at 365 days postflight. Probability quantification provides insight into how spaceflight induced BMD loss affects fracture probability. A bone loss rate reflecting improved exercise countermeasures and dietary intake further reduces the postflight fracture probability to 6% greater than preflight at 0 days postflight and 2% greater at 365 days postflight. Quantification informs assessments of countermeasure effectiveness. When preflight BMD is one standard deviation below mean astronaut preflight BMD, fracture probability at 0 days postflight is 34% greater than the preflight fracture probability calculated with mean BMD and 28% greater at 365 days postflight. Quantification aids review of astronaut BMD fitness for duty standards. Increases in postflight fracture probability are associated with an estimated 18% reduction in postflight BS. Therefore, a 0.82 deconditioning coefficient modifies force application limits for crew vehicles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jennings, R. T. , and Bagian, J. P. , 1996, “ Musculoskeletal Injury Review in the U.S. Space Program,” Aviat. Space. Environ. Med., 67(8), pp. 762–766. https://www.ncbi.nlm.nih.gov/pubmed/8853833 [PubMed]
Scheuring, R. A. , Mathers, C. H. , Jones, J. A. , and Wear, M. L. , 2009, “ Musculoskeletal Injuries and Minor Trauma in Space: Incidence and Injury Mechanisms in U.S. Astronauts,” Aviat. Space. Environ. Med., 80(2), pp. 117–124. [CrossRef] [PubMed]
Keenan, A. , Young, M. , Saile, L. , Boley, L. , Walton, M. , Kerstman, E. , Shah, R. , Goodenow, D. , and Myers, J. , 2015, “ The Integrated Medical Model: A Probabilistic Simulation Model Predicting in-Flight Medical Risks,” 45th International Conference on Environmental Systems, Paper No. ICES-2015-71.
Watkins, S. , 2010, “ Space Medicine Exploration: Full Medical Condition List,” National Aeronautics and Space Administration Johnson Space Center, Houston, TX, Report No. NASA/TP-2010-216118.
Gilkey, K. , McRae, M. , Griffin, E. , Kalluri, A. , and Myers, J. , 2012, “ Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort,” National Aeronautics and Space Administration Glenn Research Center, Cleveland, OH, Report No. NASA/TP-2012-217120. https://ntrs.nasa.gov/search.jsp?R=20120013096
Nelson, E. S. , Lewandowski, B. , Licata, A. , and Myers, J. G. , 2009, “ Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts,” Ann. Biomed. Eng., 37(11), pp. 2337–2359. [CrossRef] [PubMed]
Weaver, A. S. , Zakrajsek, A. D. , Lewandowski, B. E. , Brooker, J. E. , and Myers, J. G. , 2013, “ Predicting Head Injury Risk During International Space Station Increments,” Aviat. Space. Environ. Med., 84(1), pp. 38–46. [CrossRef] [PubMed]
Hayes, W. C. , and Myers, E. R. , 1997, “ Biomechanical Considerations of Hip and Spine Fractures in Osteoporotic Bone,” Instr. Course Lect., 46, pp. 431–438. http://www.ncbi.nlm.nih.gov/pubmed/9143985 [PubMed]
LeBlanc, A. , Schneider, V. , Shackelford, L. , West, S. , Oganov, V. , Bakulin, A. , and Voronin, L. , 2000, “ Bone Mineral and Lean Tissue Loss After Long Duration Space Flight,” J. Musculoskeletal Neuronal Interact., 1(2), pp. 157–160. http://www.ismni.org/jmni/pdf/2/leblanc.pdf
Smith, S. M. , Heer, M. A. , Shackelford, L. C. , Sibonga, J. D. , Ploutz-snyder, L. , and Zwart, S. R. , 2012, “ Benefits for Bone From Resistance Exercise and Nutrition Biochemistry and Densitometry,” J. Bone Miner. Res., 27(9), pp. 1896–1906. [CrossRef] [PubMed]
Sibonga, J. D. , Evans, H. J. , Sung, H. G. , Spector, E. R. , Lang, T. F. , Oganov, V. S. , Bakulin, A. V. , Shackelford, L. C. , and LeBlanc, A. D. , 2007, “ Recovery of Spaceflight-Induced Bone Loss: Bone Mineral Density After Long-Duration Missions as Fitted With an Exponential Function,” Bone, 41(6), pp. 973–978. [CrossRef] [PubMed]
Stamatelatos, M. , and Dezfuli, H. , 2011, “ Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners,” National Aeronautics and Space Administration Headquarters, Washington, DC, Report No. NASA/SP-2011-3421.
Vesely, W. , Stamatelatos, M. , Dugan, J. , Fragola, J. , Minarick, J. , and Railsback, J. , 2002, “ Fault Tree Handbook With Aerospace Applications,” National Aeronautics and Space Administration, Washington, DC.
Robinovitch, S. N. , Hayes, W. C. , and McMahon, T. A. , 1991, “ Prediction of Femoral Impact Forces in Falls on the Hip,” ASME J. Biomech. Eng., 113(4), pp. 366–374. [CrossRef]
Robinovitch, S. N. , Hayes, W. C. , and McMahon, T. A. , 1997, “ Distribution of Contact Force During Impact to the Hip,” Ann. Biomed. Eng., 25(3), pp. 499–508. [CrossRef] [PubMed]
Maıoun, L. , Fattal, C. , Micallef, J.-P. , Peruchon, E. , and Rabischong, P. , 2006, “ Bone Loss in Spinal Cord-Injured Patients: From Physiopathology to Therapy,” Spinal Cord, 44(4), pp. 203–210. [CrossRef] [PubMed]
Cummings, S. R. , Karpf, D. B. , Harris, F. , Genant, H. K. , Ensrud, K. , LaCroix, A. Z. , and Black, D. M. , 2002, “ Improvement in Spine Bone Density and Reduction in Risk of Vertebral Fractures During Treatment With Antiresorptive Drugs,” Am. J. Med., 112(4), pp. 281–289. [CrossRef] [PubMed]
Cheng, X. G. , Lowet, G. , Boonen, S. , Nicholson, P. H. , Van der Perre, G. , and Dequeker, J. , 1998, “ Prediction of Vertebral and Femoral Strength In Vitro by Bone Mineral Density Measured at Different Skeletal Sites,” J. Bone Miner. Res., 13(9), pp. 1439–1443. [CrossRef] [PubMed]
Bauer, J. S. , Kohlmann, S. , Eckstein, F. , Mueller, D. , Lochmüller, E. M. , and Link, T. M. , 2006, “ Structural Analysis of Trabecular Bone of the Proximal Femur Using Multislice Computed Tomography: A Comparison With Dual X-Ray Absorptiometry for Predicting Biomechanical Strength In Vitro,” Calcif. Tissue Int., 78(2), pp. 78–89. [CrossRef] [PubMed]
Grote, S. , Noeldeke, T. , Blauth, M. , Mutschler, W. , and Bürklein, D. , 2013, “ Mechanical Torque Measurement in the Proximal Femur Correlates to Failure Load and Bone Mineral Density Ex Vivo,” Orthop. Rev. (Pavia)., 5(2), pp. 77–81. [CrossRef] [PubMed]
Zysset, P. , Qin, L. , Lang, T. , Khosla, S. , Leslie, W. D. , Shepherd, J. A. , Schousboe, J. T. , and Engelke, K. , 2015, “ Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: The 2015 ISCD Official Positions—Part II,” J. Clin. Densitom., 18(3), pp. 359–392. [CrossRef] [PubMed]
Cody, D. D. , Gross, G. J. , J. Hou, F. , Spencer, H. J. , Goldstein, S. A. , and P. Fyhrie, D. , 1999, “ Femoral Strength Is Better Predicted by Finite Element Models Than QCT and DXA,” J. Biomech., 32(10), pp. 1013–1020. [CrossRef] [PubMed]
NASA, 2015, “ NASA Space Flight Human-System Standard Volume 1, Revision A: Crew Health,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-STD-3001.
Ott, S. , 2006, “ Osteoporosis and Bone Physiology,” University of Washington, Seatle, WA, accessed Aug. 24, 2018, http://courses.washington.edu/bonephys/opbmdtz.html
Kanis, J. A. , Johnell, O. , Oden, A. , Johansson, H. , and McCloskey, E. , 2008, “ FRAX and the Assessment of Fracture Probability in Men and Women From the UK,” Osteoporos. Int., 19(4), pp. 385–397. [CrossRef] [PubMed]
Watts, N. B. , 2011, “ The Fracture Risk Assessment Tool (FRAX®): Applications in Clinical Practice,” J. Womens. Health (Larchmt)., 20(4), pp. 525–531. [CrossRef] [PubMed]
Black, D. M. , Steinbuch, M. , Palermo, L. , Dargent-Molina, P. , Lindsay, R. , Hoseyni, M. S. , and Johnell, O. , 2001, “ An Assessment Tool for Predicting Fracture Risk in Postmenopausal Women,” Osteoporos. Int., 12(7), pp. 519–528. [CrossRef] [PubMed]
Chao, A.-S. , Chen, F.-P. , Lin, Y.-C. , Huang, T.-S. , Fan, C.-M. , and Yu, Y.-W. , 2015, “ Application of the World Health Organization Fracture Risk Assessment Tool to Predict Need for Dual-Energy X-Ray Absorptiometry Scanning in Postmenopausal Women,” Taiwan. J. Obstet. Gynecol., 54(6), pp. 722–725. [CrossRef] [PubMed]
Wainwright, S. A. , Marshall, L. M. , Ensrud, K. E. , Cauley, J. A. , Black, D. M. , Hillier, T. A. , Hochberg, M. C. , Vogt, M. T. , and Orwoll, E. S. , 2005, “ Hip Fracture in Women Without Osteoporosis,” J. Clin. Endocrinol. Metab., 90(5), pp. 2787–2793. [CrossRef] [PubMed]
Dufour, A. B. , Roberts, B. , Broe, K. E. , Kiel, D. P. , Bouxsein, M. L. , and Hannan, M. T. , 2012, “ The Factor-of-Risk Biomechanical Approach Predicts Hip Fracture in Men and Women: The Framingham Study,” Osteoporos. Int., 23(2), pp. 513–520. [CrossRef] [PubMed]
Keyak, J. H. , Koyama, A. K. , LeBlanc, A. , Lu, Y. , and Lang, T. F. , 2009, “ Reduction in Proximal Femoral Strength Due to Long-Duration Spaceflight,” Bone, 44(3), pp. 449–453. [CrossRef] [PubMed]
Nielson, C. M. , Bouxsein, M. L. , Freitas, S. S. , Ensrud, K. E. , and Orwoll, E. S. , 2009, “ Trochanteric Soft Tissue Thickness and Hip Fracture in Older Men,” J. Clin. Endocrinol. Metab., 94(2), pp. 491–496. [CrossRef] [PubMed]
Bouxsein, M. L. , Szulc, P. , Munoz, F. , Thrall, E. , Sornay-Rendu, E. , and Delmas, P. D. , 2007, “ Contribution of Trochanteric Soft Tissues to Fall Force Estimates, the Factor of Risk, and Prediction of Hip Fracture Risk,” J. Bone Miner. Res., 22(6), pp. 825–831. [CrossRef] [PubMed]
Davidson, P. L. , Chalmers, D. J. , and Stephenson, S. C. , 2006, “ Prediction of Distal Radius Fracture in Children, Using a Biomechanical Impact Model and Case-Control Data on Playground Free Falls,” J. Biomech., 39(3), pp. 503–509. [CrossRef] [PubMed]
McDowall, L. M. , and Dampney, R. A. L. , 2006, “ Calculation of Threshold and Saturation Points of Sigmoidal Baroreflex Function Curves,” Am. J. Physiol. Heart Circ. Physiol., 291(4), pp. H2003–H2007. [CrossRef] [PubMed]
Johnson, R. , 2011, Miller & Freund's Probability and Statistics for Engineers, Pearson Education, Boston, MA.
Marino, S. , Hogue, I. B. , Ray, C. J. , and Kirschner, D. E. , 2008, “ A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology,” J. Theor. Biol., 254(1), pp. 178–196. [CrossRef] [PubMed]
NASA, 2009, “ Constellation Program Human-Systems Integration Requirements,” National Aeronautics and Space Administration, Washington, DC, Report No. CxP 70024. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120014522.pdf
Brinkley, J. , and Shaffer, J. , 1971, “ Dynamic Simulation Techniques for the Design of Escape Systems: Current Applications and Future Air Force Requirements,” Aerospace Medical Research Laboratory, Wright-Patterson, AFB, OH, Report No. AMRL-TR-71-29.
Beck, T. J. , Ruff, C. B. , Warden, K. E. , Scott, W. W. , and Rao, G. U. , 1990, “ Predicting Femoral Neck Strength From Bone Mineral Data. A Structural Approach,” Invest. Radiol., 25(1), pp. 6–18. [CrossRef] [PubMed]
Roberts, B. J. , Thrall, E. , Muller, J. A. , and Bouxsein, M. L. , 2010, “ Comparison of Hip Fracture Risk Prediction by Femoral aBMD to Experimentally Measured Factor of Risk,” Bone, 46(3), pp. 742–746. [CrossRef] [PubMed]
Lewiecki, E. M. , 2005, “ Clinical Applications of Bone Density Testing for Osteoporosis,” Minerva Medica, 96(5), pp. 317–330. https://www.minervamedica.it/en/journals/minerva-medica/article.php?cod=R10Y2005N05A0317 [PubMed]
Broussard, D. L. , and Magnus, J. H. , 2004, “ Risk Assessment and Screening for Low Bone Mineral Density in a Multi-Ethnic Population of Women and Men: Does One Approach Fit All?,” Osteoporos. Int., 15(5), pp. 349–360. [CrossRef] [PubMed]
Sibonga, J. D. , 2013, “ Spaceflight-Induced Bone Loss: Is There an Osteoporosis Risk?,” Curr. Osteoporos. Rep., 11(2), pp. 92–98. [CrossRef] [PubMed]
Licata, 2015, “ Challenges of Estimating Fracture Risk With DXA: Changing Concepts About Bone Strength and Bone Density,” Aerosp. Med. Hum. Perform., 86(7), pp. 628–632.
Lang, T. F. , Leblanc, A. D. , Evans, H. J. , and Lu, Y. , 2006, “ Adaptation of the Proximal Femur to Skeletal Reloading After Long-Duration Spaceflight,” J. Bone Miner. Res., 21(8), pp. 1224–1230. [CrossRef] [PubMed]
Lang, T. , LeBlanc, A. , Evans, H. , Lu, Y. , Genant, H. , and Yu, A. , 2004, “ Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long-Duration Spaceflight,” J. Bone Miner. Res., 19(6), pp. 1006–1012. [CrossRef] [PubMed]
Carpenter, D. R. , LeBlanc, A. D. , Evans, H. , Sibonga, J. D. , and Lang, T. F. , 2010, “ Long-Term Changes in the Density and Structure of the Human Hip and Spine After Long-Duration Spaceflight,” Acta Astronaut., 67(1–2), pp. 71–81. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Mass-spring-damper model of the hip. Figure reproduced from Fig. 3(b) in Ref. [6] with permission from Springer Publishing © 2009.

Grahic Jump Location
Fig. 2

The BFxRM bone strength model. Shown are the mean bone strength values for preflight, in-flight and postflight conditions for bone loss rates based upon both the LeBlanc et al. study (solid line) [9] and the Smith et al. study (dashed line) [10].

Grahic Jump Location
Fig. 3

Hip fracture probability distributions for an accidental lateral fall to the side, with no protective reaction from a fall height of 1 m. The mean probably is indicated by the thin solid line and the variance is indicated with the thin dashed lines for preflight conditions (left) and for 0 (center) and 365 (right) days postflight.

Grahic Jump Location
Fig. 4

Mean hip fracture probability for an accidental lateral fall to the side from fall heights ranging from 0 to 2.3 m. Mean probabilities are calculated for preflight conditions (triangles) and for 0 (squares) and 365 (circles) days postflight.

Grahic Jump Location
Fig. 5

Mean hip fracture probability for an accidental lateral fall to the side from heights ranging from 0 to 1.5 m, for two different bone loss rates: (1) the bone loss rate reported in LeBlanc et al., obtained prior to ARED countermeasure use on ISS (squares); (2) the bone loss rate reported in Smith et al., which reflects ARED use and improved nutritional intake (circles). Mean probabilities are calculated for preflight conditions (triangles) and for 0 (left panel) and 365 (right panel) days postflight.

Grahic Jump Location
Fig. 6

Mean hip fracture probability for an accidental lateral fall to the side from heights ranging from 0 to 1.5, for two different preflight BMD levels: 1) mean preflight BMD (0.808 gcm−2) (triangles); 2) preflight BMD one standard deviation below the mean (0.705 gcm−2) (squares). Probabilities are calculated for preflight conditions and for 0 and 365 days postflight.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In