Research Papers

Aortic Expansion Induces Lumen Narrowing in Anomalous Coronary Arteries: A Parametric Structural Finite Element Analysis

[+] Author and Article Information
Giovanni Maria Formato

Department of Civil Engineering and
Architecture (DICAr),
University of Pavia,
Pavia 27100, Italy
e-mail: giovannimaria.formato01@universitadipavia.it

Mauro Lo Rito

IRCCS Policlinico San Donato,
Department of Congenital Cardiac Surgery,
San Donato Milanese 20097, Italy
e-mail: mauro.lorito@gmail.com

Ferdinando Auricchio

Department of Civil Engineering and
Architecture (DICAr),
University of Pavia,
Pavia 27100, Italy
e-mail: auricchio@unipv.it

Alessandro Frigiola

IRCCS Policlinico San Donato,
Department of Congenital Cardiac Surgery,
San Donato Milanese 20097, Italy
e-mail: alessandro.frigiola@grupposandonato.it

Michele Conti

Department of Civil Engineering and
Architecture (DICAr),
University of Pavia,
Pavia 27100, Italy
e-mail: michele.conti@unipv.it

Manuscript received February 13, 2018; final manuscript received July 16, 2018; published online August 20, 2018. Assoc. Editor: Giuseppe Vairo.

J Biomech Eng 140(11), 111008 (Aug 20, 2018) (9 pages) Paper No: BIO-18-1087; doi: 10.1115/1.4040941 History: Received February 13, 2018; Revised July 16, 2018

Anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to cardiac ischemia during intense physical activity. Although AAOCA is responsible for sudden cardiac death (SCD) among young athletes and soldiers, the mechanisms underlying the coronary occlusion during physical effort still have to be clarified. The present study investigates the correlation between geometric features of the anomaly and coronary lumen narrowing under aortic root dilatations. Idealized parametric computer-aided designed (CAD) models of the aortic root with anomalous and normal coronaries are created and static finite element (FE) simulations of increasing aortic root expansions are carried out. Different coronary take-off angles and intramural penetrations are investigated to assess their role on coronary lumen narrowing. Results show that increasing aortic and coronary pressures lead to lumen expansion in normal coronaries, particularly in the proximal tract, while the expansion of the anomalous coronaries is impaired especially at the ostium. Concerning the geometric features of the anomaly, acute take-off angles cause elongated coronary ostia, with an eccentricity increasing with aortic expansion; the impact of the coronary intramural penetration on the lumen narrowing is limited. The present study provides a proof of concept of the biomechanical reasons underlying the lumen narrowing in AAOCA during aortic expansion, promoting the role of computational simulations as a tool to assess the mechanisms of this pathology.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Click, R. L. , Holmes, D. R. , Vlietstra, R. E. , Kosinski, A. S. , Kronmal, R. A. , and The Participants of the Coronary Artery Surgery Study (CASS), 1989, “Anomalous Coronary Arteries: Location, Degree of Atherosclerosis and Effect on Survival: A Report From the Coronary Artery Surgery Study,” J. Am. Coll. Cardiol., 13(3), pp. 531–537. [CrossRef] [PubMed]
Cheitlin, M. D. , Castro, C. M. D. , and Mcallister, H. A. , 1974, “Sudden Death as a Complication of Anomalous Left Coronary Origin From the Anterior Sinus of Valsalva,” Circulation, 50(4), pp. 780–787. [CrossRef] [PubMed]
Taylor, A. J. , Byers, J. P. , Cheitlin, M. D. , and Virmani, R. , 1997, “Anomalous Right or Left Coronary Artery From the Contralateral Coronary Sinus: High-Risk Abnormalities in the Initial Coronary Artery Course and Heterogeneous Clinical Outcomes,” Am. Heart J., 133(4), pp. 428–435. [CrossRef] [PubMed]
Angelini, P. , 2002, “Coronary Artery Anomalies Current Clinical Issues,” Texas Heart Inst. J., 29(4), pp. 271–278.
Amado, J. , Carvalho, M. , Ferreira, W. , Gago, P. , Gama, V. , and Bettencourt, N. , 2016, “Coronary Arteries Anomalous Aortic Origin on a Computed Tomography Angiography Population: Prevalence, Characteristics and Clinical Impact,” Int. J. Cardiovasc. Imaging, 32(6), pp. 983–990. [CrossRef] [PubMed]
Penalver, J. M. , Mosca, R. S. , Weitz, D. , and Phoon, C. K. , 2012, “Anomalous Aortic Origin of Coronary Arteries From the opposite Sinus: A Critical Appraisal of Risk,” BMC Cardiovasc. Disorders, 12(1), p. 83. [CrossRef]
Kimbiris, D. , Iskandrian, A. S. , Segal, B. L. , and Bemis, C. E. , 1978, “Anomalous Aortic Origin of Coronary Arteries,” Circulation, 58(4), pp. 606–615. [CrossRef] [PubMed]
Pelliccia, A. , Spataro, A. , and Maron, B. J. , 1993, “Prospective Echocardiographic Screening for Coronary Artery Anomalies in 1,360 Elite Competitive Athletes,” Am. J. Cardiol., 72(12), pp. 978–979. [CrossRef] [PubMed]
Topaz, O. , DeMarchena, E. J. , Perin, E. , Sommer, L. S. , Mallon, S. M. , and Chahine, R. A. , 1992, “Anomalous Coronary Arteries: Angiographic Findings in 80 Patients,” Int. J. Cardiol., 34(2), pp. 129–138. [CrossRef] [PubMed]
Yamanaka, O. , and Hobbs, R. E. , 1990, “Coronary Artery Anomalies in 126,595 Patients Undergoing Coronary Arteriography,” Catheterization Cardiovasc. Diagn., 21(1), pp. 28–40. [CrossRef]
Maron, B. J. , Shirani, J. , Poliac, L. C. , Mathenge, R. , Roberts, W. C. , and Mueller, F. O. , 1996, “Sudden Death in Young Competitive Athletes: Clinical, Demographic, and Pathological Profiles,” JAMA, 276(3), pp. 199–204. [CrossRef] [PubMed]
Kim, S. Y. , Seo, J. B. , Do, K.-H. , Heo, J.-N. , Lee, J. S. , Song, J.-W. , Choe, Y. H. , Kim, T. H. , Yong, H. S. , Choi, S. I. , Song, K.-S. , and Lim, T.-H. , 2006, “Coronary Artery Anomalies: Classification and ECG-Gated Multi Detector Row CT Findings With Angiographic Correlation,” RadioGraphics, 26(2), pp. 317–333. [CrossRef] [PubMed]
Fabozzo, A. , DiOrio, M. , Newburger, J. W. , Powell, A. J. , Liu, H. , Fynn-Thompson, F. , Sanders, S. P. , Pigula, F. A. , del Nido, P. J. , and Nathan, M. , 2016, “Anomalous Aortic Origin of Coronary Arteries: A Single-Center Experience,” Seminars Thorac. Cardiovasc. Surg., 28(4), pp. 791–800. [CrossRef]
Roberts, W. C. , Siegel, R. J. , and Zipes, D. P. , 1982, “Origin of the Right Coronary Artery From the Left Sinus of Valsalva and Its Functional Consequences: Analysis of 10 Necropsy Patients,” Am. J. Cardiol., 49(4), pp. 863–868. [CrossRef] [PubMed]
Lee, B. Y. , 2009, “Anomalous Right Coronary Artery From the Left Coronary Sinus With an Interarterial Course: Is It Really Dangerous?,” Korean Circ. J., 39(5), pp. 175–179. [CrossRef] [PubMed]
Lee, H.-J. , Hong, Y. J. , Kim, H. Y. , Lee, J. , Hur, J. , Choi, B. W. , Chang, H.-J. , Nam, J. E. , Choe, K. O. , and Kim, Y. J. , 2012, “Anomalous Origin of the Right Coronary Artery From the Left Coronary Sinus With an Interarterial Course: Subtypes and Clinical Importance,” Radiology, 262(1), pp. 101–108. [CrossRef] [PubMed]
Kaushal, S. , Backer, C. L. , Popescu, A. R. , Walker, B. L. , Russell, H. M. , Koenig, P. R. , Rigsby, C. K. , and Mavroudis, C. , 2011, “Intramural Coronary Length Correlates With Symptoms in Patients With Anomalous Aortic Origin of the Coronary Artery,” Ann. Thorac. Surg., 92(3), pp. 986–992. [CrossRef] [PubMed]
Angelini, P. , Walmsley, R. P. , Libreros, A. , and Ott, D. A. , 2006, “Symptomatic Anomalous Origination of the Left Coronary Artery From the opposite Sinus of Valsalva,” Texas Heart Inst. J., 33(2), pp. 171–179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524694/
Angelini, P. , Velasco, J. A. , Ott, D. , and Khoshnevis, G. R. , 2003, “Anomalous Coronary Artery Arising From the opposite Sinus: Descriptive Features and Pathophysiologic Mechanisms, as Documented by Intravascular Ultrasonography,” J. Invasive Cardiol., 15(9), pp. 507–514. https://www.invasivecardiology.com/articles/anomalous-coronary-artery-arising-opposite-sinus-descriptive-features-and-pathophysiologic [PubMed]
Virmani, R. , Chun, P. K. , Goldstein, R. E. , Robinowitz, M. , and Mcallister, H. A. , 1984, “Acute Takeoffs of the Coronary Arteries along the Aortic Wall and Congenital Coronary Ostial Valve-like Ridges: Association With Sudden Death,” J. Am. Coll. Cardiol., 3(3), pp. 766–771. [CrossRef] [PubMed]
Morganti, S. , Valentini, A. , Favalli, V. , Serio, A. , Gambarin, F. I. , Vella, D. , Mazzocchi, L. , Massetti, M. , Auricchio, F. , and Arbustini, E. , 2013, “Aortic Root 3D Parametric Morphological Model From 2D-Echo Images,” Comput. Biol. Med., 43(12), pp. 2196–2204. [CrossRef] [PubMed]
Aparci, M. , Erdal, M. , Isilak, Z. , Yalcin, M. , Uz, O. , Arslan, Z. , and Kardesoglu, E. , 2013, “Enlargement of the Aorta: An Occupational Disease?,” Exp. Clin. Cardiol., 18(2), pp. 93–97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718583/ [PubMed]
de Tullio, M. D. , Pedrizzetti, G. , and Verzicco, R. , 2011, “On the Effect of Aortic Root Geometry on the Coronary Entry-Flow After a Bileaflet Mechanical Heart Valve Implant: A Numerical Study,” Acta Mech., 216(1–4), pp. 147–163. [CrossRef]
D'Andrea, A. , Cocchia, R. , Riegler, L. , Scarafile, R. , Salerno, G. , Gravino, R. , Vriz, O. , Citro, R. , Limongelli, G. , Di Salvo, G. , Cuomo, S. , Caso, P. , Russo, M. G. , Calabr, R. , and Bossone, E. , 2010, “Aortic Root Dimensions in Elite Athletes,” Am. J. Cardiol., 105(11), pp. 1629–1634. [CrossRef] [PubMed]
Conti, C. A. , Votta, E. , Della Corte, A. , Del Viscovo, L. , Bancone, C. , Cotrufo, M. , and Redaelli, A. , 2010, “Dynamic Finite Element Analysis of the Aortic Root From MRI-Derived Parameters,” Med. Eng. Phys., 32(2), pp. 212–221. [CrossRef] [PubMed]
Marom, G. , Haj-Ali, R. , Raanani, E. , Schfers, H.-J. , and Rosenfeld, M. , 2012, “A Fluid Structure Interaction Model of the Aortic Valve With Coaptation and Compliant Aortic Root,” Med. Biol. Eng. Comput., 50(2), pp. 173–182. [CrossRef] [PubMed]
Auricchio, F. , Conti, M. , Demertzis, S. , and Morganti, S. , 2011, “Finite Element Analysis of Aortic Root Dilation: A New Procedure to Reproduce Pathology Based on Experimental Data,” Comput. Methods Biomech. Biomed. Eng., 14(10), pp. 875–882. [CrossRef]
Ovcharenko, E. A. , Klyshnikov, K. U. , Vlad, A. R. , Sizova, I. N. , Kokov, A. N. , Nushtaev, D. V. , Yuzhalin, A. E. , and Zhuravleva, I. U. , 2014, “Computer-Aided Design of the Human Aortic Root,” Comput. Biol. Med., 54, pp. 109–115. [CrossRef] [PubMed]
Grande, K. J. , Cochran, R. P. , Reinhall, P. G. , and Kunzelman, K. S. , 1998, “Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry,” Ann. Biomed. Eng., 26(4), pp. 534–545. [CrossRef] [PubMed]
Grigioni, M. , Daniele, C. , Del Gaudio, C. , Morbiducci, U. , Balducci, A. , D'Avenio, G. , and Barbaro, V. , 2005, “Three-Dimensional Numeric Simulation of Flow Through an Aortic Bileaflet Valve in a Realistic Model of Aortic Root,” ASAIO J., 51(3), pp. 176–183. [CrossRef] [PubMed]
Gradus-Pizlo, I. , Bigelow, B. , Mahomed, Y. , Sawada, S. G. , Rieger, K. , and Feigenbaum, H. , 2003, “Left Anterior Descending Coronary Artery Wall Thickness Measured by High-Frequency Transthoracic and Epicardial Echocardiography Includes Adventitia,” Am. J. Cardiol., 91(1), pp. 27–32. [CrossRef] [PubMed]
Dodge, J. T. , Brown, B. G. , Bolson, E. L. , and Dodge, H. T. , 1992, “Lumen Diameter of Normal Human Coronary Arteries. influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation,” Circulation, 86(1), pp. 232–246. [CrossRef] [PubMed]
Funabashi, N. , Kobayashi, Y. , Perlroth, M. , and Rubin, G. D. , 2003, “Coronary Artery: Quantitative Evaluation of Normal Diameter Determined With Electron-Beam Ct Compared With Cine Coronary Angiography initial Experience 1,” Radiology, 226(1), pp. 263–271. [CrossRef] [PubMed]
Tops, L. F. , Wood, D. A. , Delgado, V. , Schuijf, J. D. , Mayo, J. R. , Pasupati, S. , Lamers, F. P. , van der Wall, E. E. , Schalij, M. J. , Webb, J. G. , and Bax, J. J. , 2008, “Noninvasive Evaluation of the Aortic Root With Multislice Computed Tomography: Implications for Transcatheter Aortic Valve Replacement,” JACC: Cardiovasc. Imaging, 1(3), pp. 321–330. [CrossRef] [PubMed]
Grani, C. , Benz, D. C. , Schmied, C. , Vontobel, J. , Mikulicic, F. , Possner, M. , Clerc, O. F. , Stehli, J. , Fuchs, T. A. , Pazhenkottil, A. P. , Gaemperli, O. , Buechel, R. R. , and Kaufmann, P. A. , 2017, “Hybrid Ccta/Spect Myocardial Perfusion Imaging Findings in Patients With Anomalous Origin of Coronary Arteries From the opposite Sinus and Suspected Concomitant Coronary Artery Disease,” J. Nucl. Cardiol., 24(1), pp. 226–234. [CrossRef] [PubMed]
Cheezum, M. K. , Ghoshhajra, B. , Bittencourt, M. S. , Hulten, E. A. , Bhatt, A. , Mousavi, N. , Shah, N. R. , Valente, A. M. , Rybicki, F. J. , Steigner, M. , Hainer, J. , MacGillivray, T. , Hoffmann, U. , Abbara, S. , Di Carli, M. F. , DeFaria Y. D., Landzberg, M. , Liberthson, R. , and Blankstein, R. , 2016, “Anomalous Origin of the Coronary Artery Arising From the Opposite Sinus: Prevalence and Outcomes in Patients Undergoing Coronary Cta,” Eur. Heart J.-Cardiovasc. Imaging, 18(2), pp. 224–235. [CrossRef] [PubMed]
Koch, T. , Reddy, B. , Zilla, P. , and Franz, T. , 2010, “Aortic Valve Leaflet Mechanical Properties Facilitate Diastolic Valve Function,” Comput. Methods Biomech. Biomed. Eng., 13(2), pp. 225–234. [CrossRef]
Stefanadis, C. , Stratos, C. , Boudoulas, H. , Kourouklis, C. , and Toutouzas, P. , 1990, “Distensibility of the Ascending Aorta: Comparison of Invasive and Non-Invasive Techniques in Healthy Men and in Men With Coronary Artery Disease,” Eur. Heart J., 11(11), pp. 990–996. [CrossRef] [PubMed]
Patrianakos, A. P. , Karakitsos, D. N. , de Groot, E. , Parthenakis, F. I. , Daphnis, E. K. , and Vardas, P. E. , 2006, “Alteration of Proximal Aorta Biophysical Properties in Patients With End Stage Renal Disease,” Heart, 92(2), pp. 228–232. [CrossRef] [PubMed]
Chaichana, T. , Sun, Z. , and Jewkes, J. , 2011, “Computation of Hemodynamics in the Left Coronary Artery With Variable Angulations,” J. Biomech., 44(10), pp. 1869–1878. [CrossRef] [PubMed]
Kroeker, E. J. , and Wood, E. H. , 1955, “Comparison of Simultaneously Recorded Central and Peripheral Arterial Pressure Pulses During Rest, Exercise and Tilted Position in Man,” Circ. Res., 3(6), pp. 623–632. [CrossRef] [PubMed]
Antiga, L. , Piccinelli, M. , Botti, L. , Ene-Iordache, B. , Remuzzi, A. , and Steinman, D. A. , 2008, “An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics,” Med. Biol. Eng. Comput., 46(11), p. 1097. [CrossRef] [PubMed]
Lorenz, E. C. , Mookadam, F. , Mookadam, M. , Moustafa, S. , and Zehr, K. J. , 2006, “A Systematic Overview of Anomalous Coronary Anatomy and an Examination of the Association With Sudden Cardiac Death,” Rev. Cardiovasc. Med., 7(4), pp. 205–213. http://medreviews.com/journal/reviews-in-cardiovascular-medicine/vol/7/no/4/systematic-overview-anomalous-coronary-anatomy-and-examination-association-sudden-cardiac-death [PubMed]
Mery, C. M. , Lawrence, S. M. , Krishnamurthy, R. , Sexson-Tejtel, S. K. , Carberry, K. E. , McKenzie, E. D. , and Fraser, C. D. , 2014, “Anomalous Aortic Origin of a Coronary Artery: Toward a Standardized Approach,” Semin. Thorac. Cardiovasc. Surg., 26(2), pp. 110–122.
Angelini, P. , 1999, Coronary Artery Anomalies: A Comprehensive Approach, Lippincott Williams & Wilkins, Philadelphia, PA.
Krupiński, M. , Urbańczyk-Zawadzka, M. , Laskowicz, B. , Irzyk, M. , Banyś, R. , Klimeczek, P. , Gruszczyńska, K. , and Baron, J. , 2014, “Anomalous Origin of the Coronary Artery From the Wrong Coronary Sinus Evaluated With Computed Tomography: High-Risk Anatomy and Its Clinical Relevance,” Eur. Radiol., 24(10), pp. 2353–2359. [CrossRef] [PubMed]
Lee, J. , Choe, Y. H. , Kim, H.-J. , and Park, J. E. , 2003, “Magnetic Resonance Imaging Demonstration of Anomalous Origin of the Right Coronary Artery From the Left Coronary Sinus Associated With Acute Myocardial Infarction,” J. Comput. Assisted Tomogr., 27(2), pp. 289–291. [CrossRef]
Lim, M. J. , Forsberg, M. J. , Lee, R. , and Kern, M. J. , 2004, “Hemodynamic Abnormalities Across an Anomalous Left Main Coronary Artery Assessment: Evidence for a Dynamic Ostial Obstruction,” Catheterization Cardiovasc. Interventions, 63(3), pp. 294–298. [CrossRef]
Garg, N. , Tewari, S. , Kapoor, A. , Gupta, D. K. , and Sinha, N. , 2000, “Primary Congenital Anomalies of the Coronary Arteries: A Coronary Arteriographic Study,” Int. J. Cardiol., 74(1), pp. 39–46. [CrossRef] [PubMed]
Cademartiri, F. , Schuijf, J. D. , Mollet, N. R. , Malagutti, P. , Runza, G. , Bax, J. J. , and de Feyter, P. J. , 2005, “Multislice CT Coronary Angiography: How to Do It and What is the Current Clinical Performance?,” Eur. J. Nucl. Med. Mol. Imaging, 32(11), pp. 1337–1347. [CrossRef] [PubMed]
Soncini, M. , Votta, E. , Zinicchino, S. , Burrone, V. , Mangini, A. , Lemma, M. , Antona, C. , and Redaelli, A. , 2009, “Aortic Root Performance After Valve Sparing Procedure: A Comparative Finite Element Analysis,” Med. Eng. Phys., 31(2), pp. 234–243. [CrossRef] [PubMed]
Kim, H. , Vignon-Clementel, I. , Coogan, J. , Figueroa, C. , Jansen, K. , and Taylor, C. , 2010, “Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries,” Ann. Biomed. Eng., 38(10), pp. 3195–3209. [CrossRef] [PubMed]
Nobari, S. , Mongrain, R. , Leask, R. , and Cartier, R. , 2013, “The Effect of Aortic Wall and Aortic Leaflet Stiffening on Coronary Hemodynamic: A Fluid–Structure Interaction Study,” Med. Biol. Eng. Comput., 51(8), pp. 923–936. [CrossRef] [PubMed]
Lu, J. , Zhou, X. , and Raghavan, M. L. , 2007, “Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids,” Int. J. Numer. Methods Eng., 69(6), pp. 1239–1261. [CrossRef]
Liang, L. , Liu, M. , Martin, C. , and Sun, W. , 2018, “A Machine Learning Approach as a Surrogate of Finite Element Analysis-Based Inverse Method to Estimate the Zero-Pressure Geometry of Human Thoracic Aorta,” Int. J. Numer. Methods Biomed. Eng, p. e3103 (epub).
Sturla, F. , Votta, E. , Stevanella, M. , Conti, C. A. , and Redaelli, A. , 2013, “Impact of Modeling Fluidstructure Interaction in the Computational Analysis of Aortic Root Biomechanics,” Med. Eng. Phys., 35(12), pp. 1721–1730. [CrossRef] [PubMed]
Ranga, A. , Mongrain, R. , Galaz, R. M. , Biadillah, Y. , and Cartier, R. , 2004, “Large-Displacement 3D Structural Analysis of an Aortic Valve Model With Nonlinear Material Properties,” J. Med. Eng. Technol., 28(3), pp. 95–103. [CrossRef] [PubMed]
Reddy, K. G. , Suneja, R. , Nair, R. N. , Dhawale, P. , and Hodgson, J. M. , 1993, “Measurement by Intracoronary Ultrasound of In Vivo Arterial Distensibility Within Atherosclerotic Lesions,” Am. J. Cardiol., 72(17), pp. 1232–1237. [CrossRef] [PubMed]
Weissman, N. J. , Palacios, I. F. , and Weyman, A. E. , 1995, “Dynamic Expansion of the Coronary Arteries: Implications for Intravascular Ultrasound Measurements,” Am. Heart J., 130(1), pp. 46–51. [CrossRef] [PubMed]
Holzapfel, G. A. , Sommer, G. , Gasser, C. T. , and Regitnig, P. , 2005, “Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Am. J. Physiol.-Heart Circ. Physiol., 289(5), pp. H2048–H2058. [CrossRef] [PubMed]
Karimi, A. , Navidbakhsh, M. , Razaghi, R. , and Haghpanahi, M. , 2014, “A Computational Fluid-Structure Interaction Model for Plaque Vulnerability Assessment in Atherosclerotic Human Coronary Arteries,” J. Appl. Phys., 115(14), p. 144702. [CrossRef]
Lally, C. , Reid, A. J. , and Prendergast, P. J. , 2004, “Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension,” Ann. Biomed. Eng., 32(10), pp. 1355–1364. [CrossRef] [PubMed]
Arzani, A. , and Mofrad, M. R. , 2017, “A Strain-Based Finite Element Model for Calcification Progression in Aortic Valves,” J. Biomech., 65, pp. 216–220. [CrossRef] [PubMed]
Hsu, M.-C. , Kamensky, D. , Bazilevs, Y. , Sacks, M. S. , and Hughes, T. J. , 2014, “Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation,” Comput. Mech., 54(4), pp. 1055–1071. [CrossRef] [PubMed]
Auricchio, F. , Conti, M. , Morganti, S. , and Totaro, P. , 2011, “A Computational Tool to Support Pre-Operative Planning of Stentless Aortic Valve Implant,” Med. Eng. Phys., 33(10), pp. 1183–1192. [CrossRef] [PubMed]
Lansac, E. , Lim, H.-S. , Shomura, Y. , Lim, K. H. , Rice, N. T. , Goetz, W. A. , and Duran, C. M. , 2005, “Aortic Root Dynamics are Asymmetric,” J. Heart Valve Dis., 14(3), pp. 400–407. https://www.icr-heart.com/?cid=1555 [PubMed]
Feldman, C. L. , and Stone, P. H. , 2000, “Intravascular Hemodynamic Factors Responsible for Progression of Coronary Atherosclerosis and Development of Vulnerable Plaque,” Curr. Opin. Cardiol., 15(6), pp. 430–440. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Graphic representation of two coronary arteries with normal and anomalous origin with intramural course: (a) Normal condition: LCA arises perpendicularly from the left coronary sinus and immediately branches into the LAD and the LCx arteries; (b) Anomalous condition: LCA arises with an acute angle from the right coronary sinus, courses inside the aortic wall in its early tract and then branches into the LAD and LCx arteries

Grahic Jump Location
Fig. 2

Geometric parameters of the CAD model of the aortic root with AAOCA: (a) lateral view of the model showing the heights of the principal level curves (Hs, Hsv, Hsj), the radii of the aortic annulus (R1), sinotubular junction (R2) and ascending aorta (R3), the aortic wall thickness t, the declivity angle of the coronary θ, the angle of intramural course κ. The red part refers to the portion of the aortic root comprised between the aortic annulus and the sinotubular junction, the grey parts refer to additional protrusions for boundary conditions application and geometric uniformity; (b) cross-sectional view at height Hsv describing the parameters of the level curve of the maximum protrusion of the sinuses of Valsalva.

Grahic Jump Location
Fig. 3

Illustrative representation of the model parameters dealing with the take-off angle and the wall penetration of the anomalous coronary. Box 1: Schematic view for definition of the take-off angle γ; this angle is defined as the complementary of the angle λ formed by the normal direction η of the outer aortic surface at the center of the ostium (point A) and the approximate tangent line η′ of the coronary axis at its starting point (point A). The approximate tangent line η′ is obtained as follows: the direction η is used to define a plane passing through this direction and the third point of interpolation of the coronary axis C; then the direction η is rotated in this plane by an angle λ and the new direction η′ is used to locate the second point of interpolation B at a distance equal to ρ/2 from the coronary ostium. Thus, what we refer to tangent line is actually the secant line connecting the points A and B of the coronary axis; Box 2: Definition of intramural penetration of the coronary δ: when the distance between the outer surface of the aortic wall and the coronary axis (ρ) is equal to rin the whole thickness of the coronary wall is inside the aortic wall (δ=100%). On the other hand, when ρ is equal to rext the coronary wall is tangent to the outer surface of the aortic root (δ=0%).

Grahic Jump Location
Fig. 4

(a) Luminal sections of normal coronary at different pressure increments: as the aortic pressure increases, the coronary lumen enlarges along the whole length, particularly in the proximal tract (i.e., L/Lmax = 0); (b) luminal sections of the anomalous coronary γ 35–δ50 (angle equal to 35 deg, wall penetration equal to 50%) at different pressure increments: as the aortic pressure increases, the coronary lumen experiences a slight or null enlargement in the proximal (i.e., L/Lmax = 0) and distal (i.e., L/Lmax = 1) tract, and a narrowing in correspondence of the sinuses of Valsalva (i.e., L/Lmax = 0.5), which is not dependent on the pressure increment

Grahic Jump Location
Fig. 5

Luminal sections of the anomalous coronaries at a pressure increment ΔP=100 mmHg: (a) different angles of take-off have little impact on the narrowing of the coronary between the proximal and distal tract; (b) different wall penetrations influence the narrowing of the coronary in correspondence of the sinuses of Valsalva (i.e., L/Lmax=0.5). In particular, when the coronary has an extramural course the narrowing is described by two peaks. γ = take-off angle, δ = wall penetration.

Grahic Jump Location
Fig. 6

Ostial sections of normal (top line) and anomalous coronaries with fixed wall penetration and different angles of take-off at different pressure increments. Ostial sections become more eccentric during aortic dilatation and with small angles of take-off. A = ostial area [mm2], e = eccentricity.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In