0
Research Papers

Biomechanical Analysis of Augments in Revision Total Knee Arthroplasty

[+] Author and Article Information
Bernardo Innocenti

BEAMS Department,
Université Libre De Bruxelles,
Avenue Franklin Roosevelt, 50 CP165/56
Bruxelles 1050, Belgium
e-mail: bernardo.innocenti@ulb.ac.be

Gusztáv Fekete

Faculty of Informatics,
Savaria Institute of Technology,
Eötvös Loránd University,
Károlyi Gáspár 4,
Szombathely 9700, Hungary
e-mail: fg@inf.elte.hu

Silvia Pianigiani

BEAMS Department,
Université Libre De Bruxelles,
Avenue Franklin Roosevelt, 50 CP165/56
Bruxelles 1050, Belgium
e-mail: silvia.pianigiani84@gmail.com

1Corresponding author.

Manuscript received February 9, 2018; final manuscript received July 19, 2018; published online August 20, 2018. Assoc. Editor: Anna Pandolfi.

J Biomech Eng 140(11), 111006 (Aug 20, 2018) (10 pages) Paper No: BIO-18-1077; doi: 10.1115/1.4040966 History: Received February 09, 2018; Revised July 19, 2018

Augments are a common solution for treating bone loss in revision total knee arthroplasty (TKA) and industry is providing to surgeons several options, in terms of material, thickness, and shapes. Actually, while the choice of the shape and the thickness is mainly dictated by the bone defect, no proper guidelines are currently available to select the optimal material for a specific clinical situation. Nevertheless, different materials could induce different bone responses and, later, potentially compromise implant stability and performances. Therefore, in this study, a biomechanical analysis is performed by means of finite element modeling about existing features for augment designs. Based upon a review of available products at present, the following augments features were analyzed: position (distal/proximal and posterior), thickness (5, 10, and 15 mm), and material (bone cement, porous metal, and solid metal). For all analyzed configurations, bone stresses were investigated in different regions and compared among all configurations and the control model for which no augments were used. Results show that the use of any kind of augment usually induces a change in bone stresses, especially in the region close to the bone cut. The porous metal presents result very close to cement ones; thus, it could be considered as a good alternative for defects of any size. Solid metal has the least satisfying results inducing the highest changes in bone stress. The results of this study demonstrate that material stiffness of the augment should be as close as possible to bone properties for allowing the best implant performances.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bozic, K. J. , Kurtz, S. M. , Lau, E. , Ong, K. , Chiu, V. , Vail, T. P. , Rubash, H. E. , and Berry, D. J. , 2010, “The Epidemiology of Revision Total Knee Arthroplasty in the United States,” Clin. Orthop. Relat. Res., 468(1), pp. 5–51. [CrossRef]
Sheng, P. Y. , Konttinen, L. , Lehto, M. , Ogino, D. , Jamsen, E. , Nevalainen, J. , Pajamäki, J. , Halonen, P. , and Konttinen, Y. T. , 2006, “Revision Total Knee Arthroplasty: 1990 Through 2002. A Review of the Finnish Arthroplasty Registry,” J. Bone Jt. Surg. Am., 88(7), pp. 1425–1430.
Whiteside, L. A. , 2003, “Cementless Revision Total Knee Arthroplasty,” The Adult Knee, J. J. Callaghan , A. G. Rosenberg , H. E. Rubash , P. T. Simonian , and T. L. Wickiewicz , eds., Lippincott-Williams & Wilkins, Philadelphia, PA, pp. 1465–1472.
Whittaker, J. P. , Dharmarajan, R. , and Toms, A. D. , 2008, “The Management of Bone Loss in Revision Total Knee Replacement,” J. Bone Jt. Surg. Br., 90(8), pp. 981–987. [CrossRef]
Huten, D. , 2013, “Femorotibial Bone Loss During Revision Total Knee Arthroplasty,” Orthop. Traumatol. Surg. Res., 99S(1), pp. S22–S33. [CrossRef]
Cuckler, J. M. , 2004, “Bone Loss in Total Knee Arthroplasty: Graft Augment and Options,” J Arthroplasty, 19(4 Suppl. 1), pp. 56–58. [CrossRef] [PubMed]
Radnay, C. S. , and Scuderi, G. R. , 2006, “Management of Bone Loss: Augments, Cones, Offset Stems,” Clin. Orthop., 446, pp. 83–92. [CrossRef]
Altchek, D. , Sculco, T. P. , and Rawlins, B. , 1989, “Autogenous Bone Grafting for Severe Angular Deformity in Total Knee Arthroplasty,” J Arthroplasty, 4(2), pp. 151–155. [CrossRef] [PubMed]
Insall, J. N. , 2006, “Surgical Techniques and Instrumentation in Total Knee Arthroplasty,” Surgery of the Knee, J. N. Insall , ed., 4th ed., Churchill Livingstone, New York, p. 1455.
Fehring, T. K. , Christie, M. J. , Lavernia, C. , Mason, J. B. , McAuley, J. P. , MacDonald, S. J. , and Springer, B. D. , 2008, “Revision Total Knee Arthroplasty: Planning, Management, and Controversies,” Instr. Course Lect., 57, pp. 341–363. [PubMed]
Munjal, S. , Phillips, M. J. , and Krackow, K. A. , 2001, “Revision Total Knee Arthroplasty: Planning, Controversies, and Management—Infection,” Instr. Course Lect., 50, pp. 367–377. [PubMed]
Clarke, H. D. , and Scuderi, G. R. , 2001, “Revision Total Knee Arthroplasty: Planning, Management, Controversies, and Surgical Approaches,” Instr. Course Lect., 50, pp. 359–365. [PubMed]
Completo, A. , Simoes, J. A. , and Fonseca, F. , 2009, “Revision Total Knee Arthroplasty: The Influence of Femoral Stems in Load Sharing and Stability,” Knee, 16(4), pp. 275–279. [CrossRef] [PubMed]
Yi, Y. Q. , Chun, H. Y. , Kwong, Y. C. , and Fu, Y. N. , 2012, “Review Article: Treatments for Bone Loss in Revision Total Knee Arthroplasty,” J. Orthop. Surg., 20(1), pp. 78–86. [CrossRef]
Lee, J. K. , and Choi, C. H. , 2011, “Management of Tibial Bone Defects With Metal Augmentation in Primary Total Knee Replacement,” J. Bone Jt. Surg. Br., 93(11), pp. 1493–6. [CrossRef]
Mountney, J. , Wilson, D. R. , Paice, M. , Masri, B. A. , and Greidanus, N. V. , 2008, “The Effect of an Augmentation Patella Prosthesis Versus Patelloplasty on Revision Patellar Kinematics and Quadriceps Tendon Force: An Ex Vivo Study,” J. Arthroplasty, 23(8), pp. 1219–1231. [CrossRef] [PubMed]
Completo, A. , Simoes, J. A. , Fonseca, F. , and Oliveira, M. , 2008, “The Influence of Different Tibial Stem Designs in Load Sharing and Stability at the Cement-Bone Interface in Revision TKA,” Knee, 15(3), pp. 227–232. [CrossRef] [PubMed]
Saragaglia, D. , Estour, G. , Nemer, C. , and Colle, P. E. , 2009, “Revision of 33 Unicompartmental Knee Prostheses Using Total Knee Arthroplasty: Strategy and Results,” Int. Orthop., 33(4), pp. 969–974. [CrossRef] [PubMed]
Parvizi, J. , Marrs, J. , and Morrey, B. F. , 2003, “Total Knee Arthroplasty for Neuropathic (Charcot) Joints,” Clin. Orthop. Relat. Res., 416, pp. 145–150. [CrossRef]
Rand, J. A. , 2003, “Treatment of the Patella at Reimplantation for Septic Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 416, pp. 105–109. [CrossRef]
van Loon, C. J. , de Waal Malefijt, M. C. , Buma, P. , Stolk, T. , Verdonschot, N. , Tromp, A. M. , Huiskes, R. , and Barneveld, A. , 2000, “Autologous Morsellised Bone Grafting Restores Uncontained Femoral Bone Defects in Knee Arthroplasty, An Vivo Study Horses,” J. Bone Jt. Surg. Br., 82(3), pp. 436–444. [CrossRef]
van Loon, C. J. , de Waal Malefijt, M. C. , Verdonschot, N. , Buma, P. , van der Aa, A. J. , and Huiskes, R. , 1999, “Morsellized Bone Grafting Compensates for Femoral Bone Loss in Revision Total Knee Arthroplasty. An Experimental Study,” Biomaterials, 20(1), pp. 85–89. [CrossRef] [PubMed]
Stuchin, S. A. , 1993, “Allografting in Total Knee Replacement Arthroplasty,” Semin. Arthroplasty, 4(2), pp. 117–122. [PubMed]
Pianigiani, S. , and Innocenti, B. , 2015, “The Use of Finite Element Modeling to Improve Biomechanical Research on Knee Prosthesis,” New Developments in Knee Prosthesis Research, J , . Stewart , eds., Nova Science Publishers, Hauppauge, NY, pp. 113–126.
Innocenti, B. , Bilgen, O. F. , Labey, L. , van Lenthe, G. H. , Vender Sloten, J. , and Catani, F. , 2014, “Load Sharing and Ligament Strains in Balanced, Overstuffed and Understuffed UKA. A Validated Finite Element Analysis,” J. Arthroplasty, 29(7), pp. 1491–1498. [CrossRef] [PubMed]
Innocenti, B. , Bellemans, J. , and Catani, F. , 2015, “Deviations From Optimal Alignment in TKA: Is There a Biomechanical Difference Between Femoral or Tibial Component Alignment?,” J. Arthroplasty, 31(1), pp. 295–301. [CrossRef] [PubMed]
Soenen, M. , Baracchi, M. , De Corte, R. , Labey, L. , and Innocenti, B. , 2013, “Stemmed TKA in a Femur With a Total Hip Arthroplasty. Is There a Safe Distance Between the Stem Tips?,” J. Arthroplasty, 28(8), p. 1437. [CrossRef] [PubMed]
Victor, J. , Van Doninck, D. , Labey, L. , Innocenti, B. , Parizel, P. M. , and Bellemans, J. , 2009, “How Precise Can Bony Landmarks Be Determined on a CT Scan of the Knee?,” Knee, 16(5), p. 358. [CrossRef] [PubMed]
Innocenti, B. , Pianigiani, S. , Labey, L. , Victor, J. , and Bellemans, J. , 2011, “Contact Forces in Several TKA Designs During Squatting: A Numerical Sensitivity Analysis,” J. Biomech., 44(8), pp. 1573–1581. [CrossRef] [PubMed]
Pianigiani, S. , Chevalier, Y. , Labey, L. , Pascale, V. , and Innocenti, B. , 2012, “Tibio-Femoral Kinematics in Different Total Knee Arthroplasty Designs During a Loaded Squat: A Numerical Sensitivity Study,” J. Biomech., 45(13), pp. 2315–2323. [CrossRef] [PubMed]
Pianigiani, S. , Labey, L. , Pascale, W. , and Innocenti, B. , 2016, “Knee Kinetics and Kinematics: What Are the Effects of TKA Malconfigurations?,” Knee Surg., Sports Traumatol., Arthrosc., 24(8), pp. 2415–2421. [CrossRef]
Innocenti, B. , Robledo, H. , Bernabé, R. , and Pianigiani, S. , 2015, “Investigation on the Effects Induced by TKA Features on Tibio-Femoral Mechanics. Part I: Femoral Component Designs,” J. Mech. Med. Biol., 15(2), p. 1540034. [CrossRef]
Paratte, S. , Pagnano, M. W. , Trousdale, R. T. , Berry, D. J. , 2010, “Effect of Postoperative Mechanical Axis Alignment on the Fifteen-Year Survival of Modern, Cemented Total Knee Replacements,” J. Bone Jt. Surg. Am., 15(12), p. 2143. [CrossRef]
Ingrassia, T. , Nalbone, L. , Nigrelli, V. , Tumino, V. , and Ricotta, V. , 2013, “Finite Element Analysis of Two Total Knee Prostheses,” Int. J. Interact. Des. Manuf., 7(2), p. 91. [CrossRef]
Sarathi Kopparti, P. , and Lewis, G. , 2007, “Influence of Three Variables on the Stresses in a Three-dimensional Model of a Proximal Tibia-Total Knee Implant Construct,” Biomed. Mater. Eng., 17, p. 19. [PubMed]
Innocenti, B. , Pianigiani, S. , Ramundo, G. , and Thienpont, E. , 2017, “Biomechanical Effects of Different Varus and Valgus Alignments in Medial Unicompartmental Knee Arthroplasty,” J. Arthroplasty, 31(12), pp. 2685–2691. [CrossRef]
Brihault, J. , Navacchia, A. , Pianigiani, S. , Labey, L. , De Corte, R. , Pascale, V. , and Innocenti, B. , 2016, “All-Polyethylene Tibial Components Generate Higher Stress and Micromotions Than Metal-Backed Tibial Components in Total Knee Arthroplasty,” Knee Surg. Sports Traumatol. Arthrosc., 24(8), pp. 2550–2559. [CrossRef] [PubMed]
Kayabasi, O. , and Ekici, B. , 2007, “The Effects of Static, Dynamic and Fatigue Behavior on Three-dimensional Shape Optimization of Hip Prosthesis by Finite Element Method,” Mater. Des., 28(8), p. 2269. [CrossRef]
Innocenti, B. , Truyens, E. , Labey, L. , Wong, P. , Victor, J. , and Bellemans, J. , 2009, “Can Medio-Lateral Baseplate Position and Load Sharing Induce Asymptomatic Local Bone Resorption on the Proximal Tibia? A Finite Element Study,” J. Orthop. Surg. Res., 4(1), p. 26. [CrossRef] [PubMed]
Catani, F. , Innocenti, B. , Belvedere, C. , Labey, L. , Ensini, A. , and Leardini, A. , 2010, “The Mark Coventry Award: Articular Contact Estimation in TKA Using In Vivo Kinematics and Finite Element Analysis,” Clin. Orthop. Relat. Res., 468(4), p. 19. [CrossRef] [PubMed]
Arnout, N. , Vanlommel, L. , Vanlommel, J. , Luyckx, J. P. , Labey, L. , Innocenti, B. , Victor, J. , and Bellemans, J. , 2015, “Post-Cam Mechanics and Tibiofemoral Kinematics: A Dynamic In Vitro Analysis of Eight Posterior-Stabilized Total Knee Designs,” Knee Surg. Sports Traumatol. Arthrosc., 23(11), p. 3343. [CrossRef] [PubMed]
Vaninbroukx, M. , Labey, L. , Innocenti, B. , and Bellemans, J. , 2009, “Cementing the Femoral Component in Total Arthroplasty: Which Technique Is the Best?,” Knee, 16(4), p. 265. [CrossRef] [PubMed]
Vanlommel, J. , Luyckx, J. P. , Labey, L. , Innocenti, B. , De Corte, R. , and Bellemans, J. , 2001, “Cementing the Tibial Component in Total Knee Arthroplasty: Which Technique Is the Best?,” J. Arthroplasty, 26(3), p. 492. [CrossRef]
Waanders, D. , Janssen, D. , Mann, A. K. , 2010, “The Mechanical Effects of Different Levels of Cement Penetration at the Cement–Bone Interface,” J. Biomech., 43(6), p. 1167. [CrossRef] [PubMed]
Medlin, D. J. , Charlebois, S. , Swarts, D. , Shetty, R. , and Poggie, R. A. , “Metallurgical Characterization of a Porous Tantalum Biomaterial (Trabecular MetalTM) for Orthopaedic Implant Applications,” Medical Device Materials: Materials & Processes for Medical Devices Conference, pp. 394–398.
Rawlinson, J. J. , Wright, T. M. , and Bartel, D. L. , 2005, “FEA of a Porous Tantalum Monoblock Tibia Compared With a Metal-Backed Tibial Component,” 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC, Paper No: 0165. https://www.ors.org/Transactions/51/0165.pdf
El-Zayat, B. F. , Heyse, T. J. , Fanciullacci, N. , Labey, L. , Fuchs-Winkelmann, S. , and Innocenti, B. , 2016, “Fixation Techniques and Stem Dimensions in Hinged Total Knee Arthroplasty: A Finite Element Study,” Arch. Orthop. Traum. Surg., 136(12), pp. 1741–1752. [CrossRef]
Heinlein, B. , Kutzner, I. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, M. A. , Beier, A. , and Bergmann, G. , 2009, “Direct Comparison of Measured and Calculated Total Knee Replacement Force Envelopes During Walking in the Presence of Normal and Abnormal Gait Patterns,” J. Biomech., 45(6), pp. 990–996.
Completo, A. , Duarte, R. , Fonseca, F. , Simões, J. A. , Ramos, A. , and Relvas, C. , 2013, “Biomechanical Evaluation of Different Reconstructive Techniques of Proximal Tibia in Revision Total Knee Arthroplasty: An in-Vitro and Finite Element Analysis,” Clin. Biomech., 28(3), pp. 291–298. [CrossRef]
Patel, J. V. , Masonis, J. L. , Guerin, J. , Bourne, R. B. , and Rorabeck, C. H. , 2004, “The Fate of Augments to Treat Type-2 Bone Defects in Revision Knee Arthroplasty,” J. Bone Jt. Surg. Br., 86(2), pp. 195–199. [CrossRef]
Galbusera, F. , Freutel, M. , Dürselen, L. , D'™Aiuto, M. , Croce, D. , Villa, T. , Sansone, V. , and Innocenti, B. , 2014, “Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review,” Front Bioeng. Biotechnol., 2, p. 54. [CrossRef] [PubMed]
Delport, H. , Labey, L. , De Corte, R. , Innocenti, B. , Vander Sloten, J. , and Bellemans, J. , 2013, “Collateral Ligament Strains During Knee Joint Laxity Evaluation Before and After TKA,” Clin. Biomech., 28(7), pp. 777–782. [CrossRef]
Delport, H. , Labey, L. , Innocenti, B. , De Corte, R. , Vander Sloten, J. , and Bellemans, J. , 2015, “Restoration of Constitutional Alignment in TKA Leads to More Physiological Strains in the Collateral Ligaments,” KSSTA J., 23(8), pp. 2159–2169.
Rand, J. A. , 1991, “Bone Deficiency in Total Knee Arthroplasty: Use of Metal Wedge Augmentation,” Clin. Orthop., 271, p. 63.
Mason, J. B. , and Scott, R. D. , 1999, “Management of Severe Bone Loss. Prosthetic Modularity and Custom Implants,” Revision Total Knee Arthroplasty, P. A. Lotke , and J. P. Garino , eds., Lippincott-Raven, Philadelphia, PA, p. 207.
Fehring, T. K. , Peindl, R. D. , Humble, R. S. , Harrow, M. E. , and Frick, S. L. , 1996, “Modular Tibial Augmentations in Total Knee Arthroplasty,” Clin. Orthop., 327, p. 207. [CrossRef]
Brand, M. G. , Daley, R. J. , Ewald, F. C. , and Scott, R. D. , 1989, “Tibial Tray Augmentation With Modular Metal Wedges for Tibial Bone Stock Deficiency,” Clin. Orthop. Relat. Res., 248, pp. 71–79.
Pagnano, M. W. , Trousdale, R. T. , and Rand, J. A. , 1995, “Tibial Wedge Augmentation for Bone Deficiency in Total Knee Arthroplasty: A Follow-up Study,” Clin. Orthop. Relat. Res., 321, pp. 151–155.
Tsukada, S. , Wakui, M. , and Matsueda, M. , 2013, “Metal Block Augmentation for Bone Defects of the Medial Tibia During Primary Total Knee Arthroplasty,” J. Orthop. Surg. Res., 8(1), p. 36. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Configurations analyzed, in terms of size and position for the augment (in darker grey) placed on the femoral component (a) and on the tibial component (b). M = medial; L = lateral.

Grahic Jump Location
Fig. 10

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of posterior femoral augment, in the global region of interest (50 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 4

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of proximal tibial augment, in the region of interest close to the augment (10 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 5

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of proximal tibial augment, in the global region of interest (50 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 6

Graphical overview of the von Mises stress in the femoral-bone interface for all the considered material models, in the medial, lateral, and posterior views, in the case of an augment of 5 mm placed distally. For the control, the following labels were added: A = anterior; P = posterior; M = medial; L = lateral. The dotted oval in the medial view highlights the region that shows the main changes in the surface stress.

Grahic Jump Location
Fig. 7

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of distal femoral augment, in the region of interest close to the augment (10 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 8

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of distal femoral augment, in the global region of interest (50 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 9

Medial and lateral average bone von Mises stresses in the control and for the other configurations, in the case of posterior femoral augment, in the region of interest close to the augment (10 mm depth). The values of the average von Mises stresses are normalized with respect to the values of the control configuration.

Grahic Jump Location
Fig. 2

Regions of interest analyzed for an augment of 5 mm: (a) medial local region of interest of the tibia, (b) lateral local region of interest of the tibia, (c) medial global region of interest of the tibia, (d) lateral global region of interest of the tibia, (e) medial local region of interest of the femur (distal wedge), (b) lateral local region of interest of the femur (distal wedge), and (g) medial and lateral local regions of interest of the femur (posterior wedge)

Grahic Jump Location
Fig. 3

Graphical overview of the von Mises stress in the tibial-bone interface for all the considered material models in the case of an augment of 5 mm. A = anterior; P = posterior; M = medial; L = lateral.

Grahic Jump Location
Fig. 11

Medial and lateral average bone von Mises stresses for the three worst case scenarios analyzed. Tibial configuration: no wedge on the medial tibial side. Femoral distal configuration: no distal wedge on the medial femoral condyle. Femoral posterior configuration: no posterior wedge on the medial femoral condyle. In the three cases, the bone defect has a thickness of 5 mm. The normalized average von Mises stress is calculated in the 5 mm medial region in contact with the defect, as illustrated in Fig. 2, and on the relative lateral side.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In