0
Technical Brief

Prediction of Anterior Cruciate Ligament Force Produced by Tibiofemoral Compression During Controlled Knee Flexion: A New Robotic Testing Methodology

[+] Author and Article Information
Keith L. Markolf

Biomechanics Research Section,
UCLA Department of Orthopaedic Surgery,
David Geffen School of Medicine,
1000 Veteran Avenue,
UCLA Rehabilitation Center, Room 21-67,
Los Angeles, CA 90095
e-mail: kmarkolf@mednet.ucla.edu

Daniel V. Boguszewski, David R. McAllister

Biomechanics Research Section,
UCLA Department of Orthopaedic Surgery,
David Geffen School of Medicine,
1000 Veteran Avenue,
UCLA Rehabilitation Center, Room 21-67,
Los Angeles, CA 90095

Kent T. Yamaguchi, Jr.

Biomechanics Research Section,
UCLA Department of Orthopaedic Surgery,
David Geffen School of Medicine,
1000 Veteran Avenue,
UCLA Rehabilitation Center, Room 21-67,
Los Angeles, CA 90095

Christopher J. Lama

Biomechanics Research Section,
UCLA Department of Orthopaedic Surgery,
David Geffen School of Medicine,
1000 Veteran Avenue,
UCLA Rehabilitation Center, Room 21-67,
Los Angeles, CA 90095

1Corresponding author.

Manuscript received February 12, 2018; final manuscript received June 26, 2018; published online September 25, 2018. Assoc. Editor: Paul Rullkoetter.

J Biomech Eng 140(12), 124503 (Sep 25, 2018) (6 pages) Paper No: BIO-18-1085; doi: 10.1115/1.4040775 History: Received February 12, 2018; Revised June 26, 2018

Application of tibiofemoral compression force (TCF) has been shown to produce anterior cruciate ligament (ACL) injuries in a laboratory setting. A new robotic testing methodology was utilized to predict ACL forces generated by TCF without directly loading the ligament. We hypothesized that ACL force, directly recorded by a miniature load cell during an unconstrained test, could be predicted by measurements of anterior tibial restraining force (ARF) recorded during a constrained test. The knee was first flexed under load control with 25 N TCF (tibial displacements and rotations unconstrained) to record a baseline kinematic pathway. Tests were repeated with increasing levels of TCF, while recording ACL force and knee kinematics. Then tests with increasing TCF were performed under displacement control to reproduce the baseline kinematic pathway (tibia constrained), while recording ARF. This allowed testing to 1500 N TCF since the ACL was not loaded. TCF generated ACL force for all knees (n = 10) at 50 deg flexion, and for eight knees at 30 deg flexion (unconstrained test). ACL force (unconstrained test) and ARF (constrained test) had strong linear correlations with TCF at both flexion angles (R2 from 0.85 to 0.99), and ACL force was strongly correlated with ARF at both flexion angles (R2 from 0.76 to 0.99). Under 500 N TCF, the mean error between ACL force prediction from ARF regression and measured ACL force was 4.8±7.3 N at 30 deg and 8.8±27.5 N at 50 deg flexion. Our hypothesis was confirmed for TCF levels up to 500 N, and ARF had a strong linear correlation with TCF up to 1500 N TCF.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Meyer, E. G. , Baumer, T. G. , Slade, J. M. , Smith, W. E. , and Haut, R. C. , 2008, “ Tibiofemoral Contact Pressures and Osteochondral Microtrauma During Anterior Cruciate Ligament Rupture Due to Excessive Compressive Loading and Internal Torque of the Human Knee,” Am. J. Sports Med., 36(10), pp. 1966–1977. [CrossRef] [PubMed]
Meyer, E. G. , and Haut, R. C. , 2008, “ Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression,” J. Biomech., 41(16), pp. 3377–3383. [CrossRef] [PubMed]
Oh, Y. K. , Kreinbrink, J. L. , Wojtys, E. M. , and Ashton-Miller, J. A. , 2012, “ Effect of Axial Tibial Torque Direction on ACL Relative Strain and Strain Rate in an In Vitro Simulated Pivot Landing,” J. Orthop. Res., 30(4), pp. 528–534. [CrossRef] [PubMed]
Boden, B. P. , Dean, G. S. , Feagin , J. A., Jr. , and Garrett, W. E., Jr. , 2000, “ Mechanisms of Anterior Cruciate Ligament Injury,” Orthopedics, 23(6), pp. 573–578. [PubMed]
Ford, K. R. , Myer, G. D. , and Hewett, T. E. , 2003, “ Valgus Knee Motion During Landing in High School Female and Male Basketball Players,” Med. Sci. Sports Exercise, 35(10), pp. 1745–1750. [CrossRef]
Fukuda, Y. , Woo, S. L. , Tsuda, E. , Tang, P. , McMahon, P. , and Debski, R. , 2003, “ A Quantitative Analysis of Valgus Torque on the ACL: A Human Cadaveric Study,” J. Orthop. Res., 21(6), pp. 1107–1112. [CrossRef] [PubMed]
Hewett, T. E. , Myer, G. D. , Ford, K. R. , Heidt, R. S. , Colosimo, A. J. , McLean, S. G. , Van Den Bogert, A. J. , Paterno, M. V. , and Succop, P. , 2005, “ Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study,” Am. J. Sports Med., 33(4), pp. 492–501. [CrossRef] [PubMed]
Koga, H. , Nakamae, A. , Shima, Y. , Iwasa, J. , Myklebust, G. , Engebretsen, L. , Bahr, R. , and Krosshaug, T. , 2010, “ Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations From Female Team Handball and Basketball,” Am. J. Sports Med., 38(11), pp. 2218–2225. [CrossRef] [PubMed]
DeMorat, G. , Weinhold, P. , Blackburn, T. , Chudik, S. , and Garrett, W. , 2004, “ Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury,” Am. J. Sports Med., 32(2), pp. 477–483. [CrossRef] [PubMed]
Fleming, B. C. , Beynnon, B. D. , Nichols, C. E. , Johnson, R. J. , and Pope, M. H. , 1993, “ An In Vivo Comparison of Anterior Tibial Translation and Strain in the Anteromedial Band of the Anterior Cruciate Ligament,” J. Biomech., 26(1), pp. 51–58. [CrossRef] [PubMed]
Markolf, K. L. , Burchfield, D. M. , Shapiro, M. M. , Shepard, M .F. , Finerman, G. A. M. , and Slauterbeck, J. L. , 1995, “ Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces,” J. Orthop. Res., 13(6), pp. 930–935. [CrossRef] [PubMed]
Markolf, K. L. , O'Neill, G. , Jackson, S. R. , and McAllister, D. R. , 2004, “ Effects of Applied Quadriceps and Hamstrings Muscle Loads on Forces in the Anterior and Posterior Cruciate Ligaments,” Am. J. Sports Med., 32(5), pp. 1144–1149. [CrossRef] [PubMed]
McLean, S. G. , Oh, Y. K. , Palmer, M. L. , Lucey, S. M. , Lucarelli, D. G. , Ashton-Miller, J. A. , and Wojtys, E. M. , 2011, “ The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task,” J. Bone Jt. Surg. Am., 93(14), pp. 1310–1317. [CrossRef]
Brandon, M. L. , Haynes, P. T. , Bonamo, J. R. , Flynn, M. I. , Barrett, G. R. , and Sherman, M. F. , 2006, “ The Association Between Posterior-Inferior Tibial Slope and Anterior Cruciate Ligament Insufficiency,” Arthroscopy, 22(8), pp. 894–899. [CrossRef] [PubMed]
Hashemi, J. , Chandrashekar, N. , Mansouri, H. , Gill, B. , Slauterbeck, J. R. , Schutt , R. C., Jr. , Dabezies, E. , and Beynnon, B. D. , 2010, “ Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes: New Risk Factors for Anterior Cruciate Ligament Injuries,” Am. J. Sports Med., 38(1), pp. 54–62. [CrossRef] [PubMed]
Kostogiannis, I. , Swärd, P. , Neuman, P. , Fridén, T. , and Roos, H. , 2011, “ The Influence of Posterior-Inferior Tibial Slope in ACL Injury,” Knee Surg. Sports Traumatol. Arthrosc., 19(4), pp. 592–597. [CrossRef] [PubMed]
Lipps, D. B. , Oh, Y. K. , Ashton-Miller, J. A. , and Wojtys, E. M. , 2012, “ Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing,” Am. J. Sports Med., 40(1), pp. 32–40. [CrossRef] [PubMed]
Todd, M. S. , Lalliss, S. , Garcia, E. , DeBerardino, T. M. , and Cameron, K. L. , 2010, “ The Relationship Between Posterior Tibial Slope and Anterior Cruciate Ligament Injuries,” Am. J. Sports Med., 38(1), pp. 63–67. [CrossRef] [PubMed]
Beynnon, B. D. , Hall, J. S. , Sturnick, D. R. , Desarno, M. J. , Gardner-Morse, M. , Tourville, T. W. , Smith, H. C. , Slauterbeck, J. R. , Shultz, S. J. , Johnson, R. J. , and Vacek, P. M. , “ Increased Slope of the Lateral Tibial Plateau Subchondral Bone is Associated With Greater Risk of Noncontact ACL Injury in Females but Not in Males: A Prospective Cohort Study With a Nested, Matched Case-Control Analysis,” Am. J. Sports Med., 42(5), pp. 1039–1048. [CrossRef] [PubMed]
Giffin, J. R. , Vogrin, T. M. , Zantop, T. , Woo, S. L. , and Harner, C. D. , 2004, “ Effects of Increasing Tibial Slope on the Biomechanics of the Knee,” Am. J. Sports Med., 32(2), pp. 376–382. [CrossRef] [PubMed]
Sturnick, D. R. , Vacek, P. M. , DeSarno, M. J. , Gardner-Morse, M. G. , Tourville, T. W. , Slauterbeck, J. R. , Johnson, R. J. , Shultz, S. J. , and Beynnon, B. D. , 2015, “ Combined Anatomic Factors Predicting Risk of Anterior Cruciate Ligament Injury for Males and Females,” Am. J. Sports Med., 43(4), pp. 839–847. [CrossRef] [PubMed]
Torzilli, P. A. , Deng, X. , and Warren, R. F. , 1994, “ The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee,” Am. J. Sports Med., 22(1), pp. 105–112. [CrossRef] [PubMed]
Markolf, K. L. , Gorek, J. F. , Kabo, J. M. , and Shapiro, M. S. , 1990, “ Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament: An In Vitro Study Performed With a New Experimental Technique,” J. Bone Jt. Surg. Am., 72(4), pp. 557–567. [CrossRef]
Markolf, K. L. , Jackson, S. R. , Foster, B. , and McAllister, D. R. , 2014, “ ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion-Extension Cycle,” J. Orthop. Res., 32(1), pp. 89–95. [CrossRef] [PubMed]
Markolf, K. L. , Boguszewski, D. V. , Yamaguchi, K. T. , Mathew, J. , and McAllister, D. R. , “ Effects of Tibiofemoral Compression on ACL Forces and Knee Kinematics Under Combined Knee Loads,” J. Orthop. Res. (in press).
Wall, S. J. , Rose, D. M. , Sutter, E. G. , Belkoff, S. M. , and Boden, B. P. , 2012, “ The Role of Axial Compressive and Quadriceps Forces in Noncontact Anterior Cruciate Ligament Injury: A Cadaveric Study,” Am. J. Sports Med., 40(3), pp. 568–573. [CrossRef] [PubMed]
Willy, R. W. , Bigelow, M. A. , Kolesar, A. , Willson, J. D. , and Thomas, J. S. , 2016, “ Knee Contact Forces and Lower Extremity Support Moments During Running in Young Individuals Post-Partial Meniscectomy,” Knee Surg. Sports Traumatol. Arthrosc., 25(1), pp. 115–122. [CrossRef] [PubMed]
Woo, S. L. , Hollis, J. M. , Adams, D. J. , Lyon, R. M. , and Takai, S. , 1991, “ Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Test curves showing ACL force generation during 50 deg of flexion. (a) All specimens generated ACL force at 50 deg flexion (specimen 10 shown) and (b) the ACL in two specimens did not respond at 30 deg flexion (specimen 8 shown).

Grahic Jump Location
Fig. 2

Mean linear regression curves of measured ACL force versus TCF for unconstrained tests at (a) 30 deg flexion and (b) 50 deg flexion. Mean values are shown with standard deviations indicated by error bars. All knees were included (b), and eight knees (responders) were included in (a).

Grahic Jump Location
Fig. 3

Mean linear regression curves of ARF versus TCF for constrained tests at (a) 30 deg flexion and (b) 50 deg flexion. Mean values are shown with standard deviations indicated by error bars. All knees were included (b) and eight knees (responders) were included in (a).

Grahic Jump Location
Fig. 4

Mean linear regression curves of measured ACL force versus ARF for increasing levels of TCF during constrained tests at (a) 30 deg flexion and (b) 50 deg flexion. Mean values (open circles) are plotted in 100 N increments of applied TCF, with standard deviations indicated by error bars. All knees were included (b) and eight knees (responders) were included in(a).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In