Research Papers

A Fluid–Structure Interaction Model of the Left Coronary Artery

[+] Author and Article Information
Daphne Meza, David A. Rubenstein

Biomedical Engineering Department,
Stony Brook University,
Stony Brook, NY 11794

Wei Yin

Biomedical Engineering Department,
Stony Brook University,
Room 109,
Stony Brook, NY 11794
e-mail: wei.yin@stonybrook.edu

1Corresponding author.

Manuscript received January 19, 2018; final manuscript received June 12, 2018; published online September 25, 2018. Assoc. Editor: C. Alberto Figueroa.

J Biomech Eng 140(12), 121006 (Sep 25, 2018) (8 pages) Paper No: BIO-18-1037; doi: 10.1115/1.4040776 History: Received January 19, 2018; Revised June 12, 2018

A fluid–structure interaction (FSI) model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The three-dimensional (3D) geometry was constructed based on a patient's computed tomography angiography (CTA) data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier–Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney–Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular wall stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Aggarwal, R. , Ferenxzi, E. , and Muirhead, N. , 2007, One Stop Doc Cardiology, CRC Press, Boca Raton, FL.
Harsh, M. , 2010, Textbook of Pathology, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi, India.
CDC Wonder Online Database, 2013, “ Underlying Cause of Death 1999–2013 on CDC Wonder Online Database,” Atlanta, GA.
Cunningham, K. S. , and Gotlieb, A. I. , 2005, “ The Role of Shear Stress in the Pathogenesis of Atherosclerosis,” Lab. Invest., 85(1), pp. 9–23. [CrossRef] [PubMed]
Jufri, N. F. , Mohamedali, A. , Avolio, A. , and Baker, M. S. , 2015, “ Mechanical Stretch: Physiological and Pathological Implications for Human Vascular Endothelial Cells,” Vasc. Cell, 7(1), p. 8. [CrossRef] [PubMed]
Meza, D. , Abejar, L. , Rubenstein, D. A. , and Yin, W. , 2016, “ A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells,” ASME J. Biomech. Eng., 138(3), p. 4032550. [CrossRef]
Tecelao, S. R. , Zwanenburg, J. J. , Kuijer, J. P. , and Marcus, J. T. , 2006, “ Extended Harmonic Phase Tracking of Myocardial Motion: Improved Coverage of Myocardium and Its Effect on Strain Results,” J. Magn. Reson. Imaging, 23(5), pp. 682–690. [CrossRef] [PubMed]
Vis, M. A. , Sipkema, P. , and Westerhof, N. , 1995, “ Modeling Pressure-Area Relations of Coronary Blood Vessels Embedded in Cardiac Muscle in Diastole and Systole,” Am. J. Physiol., 268(6 Pt. 2), pp. H2531–H2543. [PubMed]
Qiu, Y. , and Tarbell, J. M. , 2000, “ Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery,” ASME J. Biomech. Eng., 122(1), pp. 77–85. [CrossRef]
Santamarina, A. , Weydahl, E. , Siegel, J. M., Jr. , and Moore, J. E., Jr. , 1998, “ Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature,” Ann. Biomed. Eng., 26(6), pp. 944–954. [CrossRef] [PubMed]
Van Langenhove, G. , Wentzel, J. J. , Krams, R. , Slager, C. J. , Hamburger, J. N. , and Serruys, P. W. , 2000, “ Helical Velocity Patterns in a Human Coronary Artery: A Three-Dimensional Computational Fluid Dynamic Reconstruction Showing the Relation With Local Wall Thickness,” Circulation, 102(3), pp. E22–E24. [CrossRef] [PubMed]
Malve, M. , Gharib, A. M. , Yazdani, S. K. , Finet, G. , Martinez, M. A. , Pettigrew, R. , and Ohayon, J. , 2015, “ Tortuosity of Coronary Bifurcation as a Potential Local Risk Factor for Atherosclerosis: CFD Steady State Study Based on In Vivo Dynamic CT Measurements,” Ann. Biomed. Eng., 43(1), pp. 82–93. [CrossRef] [PubMed]
Mahalingam, A. , Gawandalkar, U. U. , Kini, G. , Buradi, A. , Araki, T. , Ikeda, N. , Nicolaides, A. , Laird, J. R. , Saba, L. , and Suri, J. S. , 2016, “ Numerical Analysis of the Effect of Turbulence Transition on the Hemodynamic Parameters in Human Coronary Arteries,” Cardiovasc. Diagn. Ther., 6(3), pp. 208–220. [CrossRef] [PubMed]
Taylor, C. A. , and Figueroa, C. A. , 2009, “ Patient-Specific Modeling of Cardiovascular Mechanics,” Annu. Rev. Biomed. Eng., 11(1), pp. 109–134. [CrossRef] [PubMed]
Torii, R. , Wood, N. B. , Hadjiloizou, N. , Dowsey, A. W. , Wright, A. R. , Hughes, A. D. , Davies, J. , Francis, D. P. , Mayet, J. , Yang, G.-Z. , Thom, S. A. M. , and Xu, X. Y. , 2009, “ Fluid–Structure Interaction Analysis of a Patient-Specific Right Coronary Artery With Physiological Velocity and Pressure Waveforms,” Commun. Numer. Methods Eng., 25(5), pp. 565–580. [CrossRef]
Hasan, M. , Rubenstein, D. A. , and Yin, W. , 2013, “ Effects of Cyclic Motion on Coronary Blood Flow,” ASME J. Biomech. Eng., 135(12), p. 121002. [CrossRef]
Zeng, D. , Ding, Z. , Friedman, M. H. , and Ethier, C. R. , 2003, “ Effects of Cardiac Motion on Right Coronary Artery Hemodynamics,” Ann. Biomed. Eng., 31(4), pp. 420–429. [CrossRef] [PubMed]
Tang, D. , Yang, C. , Kobayashi, S. , Zheng, J. , Woodard, P. K. , Teng, Z. , Billiar, K. , Bach, R. , and Ku, D. N. , 2009, “ 3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis,” ASME J. Biomech. Eng., 131(6), p. 061010. [CrossRef]
Smith, N. P. , 2004, “ A Computational Study of the Interaction Between Coronary Blood Flow and Myocardial Mechanics,” Physiol. Meas., 25(4), pp. 863–877. [CrossRef] [PubMed]
Cookson, A. N. , Lee, J. , Michler, C. , Chabiniok, R. , Hyde, E. , Nordsletten, D. A. , Sinclair, M. , Siebes, M. , and Smith, N. P. , 2012, “ A Novel Porous Mechanical Framework for Modelling the Interaction Between Coronary Perfusion and Myocardial Mechanics,” J. Biomech., 45(5), pp. 850–855. [CrossRef] [PubMed]
Spann, J. A. , 1993, “ Heart Contraction and Coronary Blood Flow,” Recent Advances in Coronary Circulation, Springer, Tokyo, Japan, pp. 60–68.
Zhang, W. , Herrera, C. , Atluri, S. N. , and Kassab, G. S. , 2004, “ Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics,” ASME J. Biomech. Eng., 126(6), pp. 760–769. [CrossRef]
Ohayon, J. , Gharib, A. M. , Garcia, A. , Heroux, J. , Yazdani, S. K. , Malve, M. , Tracqui, P. , Martinez, M. A. , Doblare, M. , Finet, G. , and Pettigrew, R. I. , 2011, “ Is Arterial Wall-Strain Stiffening an Additional Process Responsible for Atherosclerosis in Coronary Bifurcations?: An In Vivo Study Based on Dynamic CT and MRI,” Am. J. Physiol. Heart Circ. Physiol., 301(3), pp. H1097–H1106. [CrossRef] [PubMed]
Shanmugavelayudam, S. K. , Rubenstein, D. A. , and Yin, W. , 2010, “ Effect of Geometrical Assumptions on Numerical Modeling of Coronary Blood Flow Under Normal and Disease Conditions,” ASME J. Biomech. Eng., 132(6), p. 061004. [CrossRef]
Gradus-Pizlo, I. , Bigelow, B. , Mahomed, Y. , Sawada, S. G. , Rieger, K. , and Feigenbaum, H. , 2003, “ Left Anterior Descending Coronary Artery Wall Thickness Measured by High-Frequency Transthoracic and Epicardial Echocardiography Includes Adventitia,” Am. J. Cardiol., 91(1), pp. 27–32. [CrossRef] [PubMed]
Oviedo, C. , Maehara, A. , Mintz, G. S. , Araki, H. , Choi, S. Y. , Tsujita, K. , Kubo, T. , Doi, H. , Templin, B. , Lansky, A. J. , Dangas, G. , Leon, M. B. , Mehran, R. , Tahk, S. J. , Stone, G. W. , Ochiai, M. , and Moses, J. W. , 2010, “ Intravascular Ultrasound Classification of Plaque Distribution in Left Main Coronary Artery Bifurcations: Where Is the Plaque Really Located?,” Circ. Cardiovasc. Interv., 3(2), pp. 105–112. [CrossRef] [PubMed]
Zandwijk, J. K. , 2014, Dynamic Geometry and Plaque Development in the Coronary Arteries, Department of Radiology & Center for Medical Imaging – North East Netherlands, University of Groningen, Groningen.
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “ A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity Phys. Sci. Solids, 61(1), pp. 1–48. [CrossRef]
ADINA R&D, Inc., 2012, ADINA Theory and Modeling Guide, ADINA R&D, Watertown, MA.
Kural, M. H. , Cai, M. , Tang, D. , Gwyther, T. , Zheng, J. , and Billiar, K. L. , 2012, “ Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling,” J. Biomech., 45(5), pp. 790–798. [CrossRef] [PubMed]
Karimi, A. , Navidbakhsh, M. , Yamada, H. , and Razaghi, R. , 2014, “ A Nonlinear Finite Element Simulation of Balloon Expandable Stent for Assessment of Plaque Vulnerability Inside a Stenotic Artery,” Med. Biol. Eng. Comput., 52(7), pp. 589–599. [CrossRef] [PubMed]
Florenciano-Sanchez, R. , de la Morena-Valenzuela, G. , Villegas-Garcia, M. , Soria-Arcos, F. , Rubio-Paton, R. , Teruel-Carrillo, F. , Hurtado, J. , and Valdes-Chavarri, M. , 2005, “ Noninvasive Assessment of Coronary Flow Velocity Reserve in Left Anterior Descending Artery Adds Diagnostic Value to Both Clinical Variables and Dobutamine Echocardiography: A Study Based on Clinical Practice,” Eur. J. Echocardiogr., 6(4), pp. 251–259. [CrossRef] [PubMed]
Yin, W. , Alemu, Y. , Affeld, K. , Jesty, J. , and Bluestein, D. , 2004, “ Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves,” Ann. Biomed. Eng., 32(8), pp. 1058–1066. [CrossRef] [PubMed]
Vignon-Clementel, I. E. , Figueroa, C. A. , Jansen, K. E. , and Taylor, C. A. , 2010, “ Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 625–640. [CrossRef]
Watanabe, N. , 2017, “ Noninvasive Assessment of Coronary Blood Flow by Transthoracic Doppler Echocardiography: Basic to Practical Use in the Emergency Room,” J. Echocardiogr., 15(2), pp. 49–56. [CrossRef] [PubMed]
van Wolferen, S. A. , Marcus, J. T. , Westerhof, N. , Spreeuwenberg, M. D. , Marques, K. M. J. , Bronzwaer, J. G. F. , Henkens, I. R. , Gan, C. T.-J. , Boonstra, A. , Postmus, P. E. , and Vonk-Noordegraaf, A. , 2008, “ Right Coronary Artery Flow Impairment in Patients With Pulmonary Hypertension,” Eur. Heart J., 29(1), pp. 120–127. [CrossRef] [PubMed]
Javadzadegan, A. , Yong, A. S. , Chang, M. , Ng, M. K. , Behnia, M. , and Kritharides, L. , 2017, “ Haemodynamic Assessment of Human Coronary Arteries Is Affected by Degree of Freedom of Artery Movement,” Comput. Methods Biomech. Biomed. Eng., 20(3), pp. 260–272. [CrossRef]
Dhawan, S. S. , Avati Nanjundappa, R. P. , Branch, J. R. , Taylor, W. R. , Quyyumi, A. A. , Jo, H. , McDaniel, M. C. , Suo, J. , Giddens, D. , and Samady, H. , 2010, “ Shear Stress and Plaque Development,” Expert Rev. Cardiovasc. Ther., 8(4), pp. 545–556. [CrossRef] [PubMed]
Eshtehardi, P. , McDaniel, M. C. , Suo, J. , Dhawan, S. S. , Timmins, L. H. , Binongo, J. N. , Golub, L. J. , Corban, M. T. , Finn, A. V. , Oshinski, J. N. , Quyyumi, A. A. , Giddens, D. P. , and Samady, H. , 2012, “ Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease,” J. Am. Heart Assoc., 1(4), p. e002543. [CrossRef] [PubMed]
Hetterich, H. , Jaber, A. , Gehring, M. , Curta, A. , Bamberg, F. , Filipovic, N. , and Rieber, J. , 2015, “ Coronary Computed Tomography Angiography Based Assessment of Endothelial Shear Stress and Its Association With Atherosclerotic Plaque Distribution in-Vivo,” PLoS One, 10(1), p. e0115408. [CrossRef] [PubMed]
Malek, A. M. , Alper, S. L. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” JAMA, 282(21), pp. 2035–2042. [CrossRef] [PubMed]
Wang, Y. , Qiu, J. , Luo, S. , Xie, X. , Zheng, Y. , Zhang, K. , Ye, Z. , Liu, W. , Gregersen, H. , and Wang, G. , 2016, “ High Shear Stress Induces Atherosclerotic Vulnerable Plaque Formation Through Angiogenesis,” Regen. Biomater., 3(4), pp. 257–267. [CrossRef] [PubMed]
Yamamoto, T. , Iwasaki, K. , Arai, J. , and Umezu, M. , 2015, “ A Study of the Proximal Left Anterior Descending Coronary Artery Motion,” J. Medical Diagnostic Methods, 4(3), p. 182.
Liang, Y. , Zhu, H. , Gehrig, T. , and Friedman, M. H. , 2008, “ Measurement of the Transverse Strain Tensor in the Coronary Arterial Wall From Clinical Intravascular Ultrasound Images,” J. Biomech, . 41(14), pp. 2906–2911. [CrossRef] [PubMed]
Valgimigli, M. , Rodriguez-Granillo, G. A. , Garcia-Garcia, H. M. , Vaina, S. , De Jaegere, P. , De Feyter, P. , and Serruys, P. W. , 2007, “ Plaque Composition in the Left Main Stem Mimics the Distal but Not the Proximal Tract of the Left Coronary Artery: Influence of Clinical Presentation, Length of the Left Main Trunk, Lipid Profile, and Systemic Levels of C-Reactive Protein,” J. Am. Coll. Cardiol., 49(1), pp. 23–31. [CrossRef] [PubMed]
Choy, J. S. , and Kassab, G. S. , 2009, “ Wall Thickness of Coronary Vessels Varies Transmurally in the LV but Not the RV: Implications for Local Stress Distribution,” Am. J. Physiol. Heart Circ. Physiol., 297(2), pp. H750–H758. [CrossRef] [PubMed]
Bentzon, J. F. , Otsuka, F. , Virmani, R. , and Falk, E. , 2014, “ Mechanisms of Plaque Formation and Rupture,” Circ. Res., 114(12), pp. 1852–1866. [CrossRef] [PubMed]
Joshi, A. K. , Leask, R. L. , Myers, J. G. , Ojha, M. , Butany, J. , and Ethier, C. R. , 2004, “ Intimal Thickness Is Not Associated With Wall Shear Stress Patterns in the Human Right Coronary Artery,” Arterioscler. Thromb. Vasc. Biol., 24(12), pp. 2408–2413. [CrossRef] [PubMed]
Raut, S. S. , Jana, A. , De Oliveira, V. , Muluk, S. C. , and Finol, E. A. , 2013, “ The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics,” ASME J. Biomech. Eng., 135(8), p. 81010. [CrossRef]
Moon, J. Y. , Suh, D. C. , Lee, Y. S. , Kim, Y. W. , and Lee, J. S. , 2014, “ Considerations of Blood Properties, Outlet Boundary Conditions and Energy Loss Approaches in Computational Fluid Dynamics Modeling,” Neurointervention, 9(1), pp. 1–8. [CrossRef] [PubMed]
Prosi, M. , Perktold, K. , Ding, Z. , and Friedman, M. H. , 2004, “ Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model,” J. Biomech., 37(11), pp. 1767–1775. [CrossRef] [PubMed]
Yang, C. , Bach, R. G. , Zheng, J. , Naqa, I. E. , Woodard, P. K. , Teng, Z. , Billiar, K. , and Tang, D. , 2009, “ In Vivo IVUS-Based 3-D Fluid-Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis,” IEEE Trans. Biomed. Eng., 56(10), pp. 2420–2428. [CrossRef] [PubMed]
Ziadinov, E. , and Al-Sabti, H. , 2013, “ Localizing Intramyocardially Embedded Left Anterior Descending Artery During Coronary Bypass Surgery: Literature Review,” J. Cardiothorac. Surg., 8(1), p. 202. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Patient-specific LAD segmentation workflow. Myocardium region was isolated from CTA data at diastole and at systole: (a) the LAD was segmented and prepared for mesh generation; (b) diseased condition was simulated by adding a 70% stenosis, 8 mm downstream from the LAD inlet.

Grahic Jump Location
Fig. 2

Input waveforms for the FSI model: (a) cyclic displacement of LAD was computed by tracking centerline locations of the LAD at the end of systole and diastole; (b) LAD wall displacement waveform (of the element with the largest displacement), pressure waveform induced by myocardial contraction, and inlet blood velocity waveform during one cardiac cycle (0.9 s). Displacement of the blood vessel varied between 0.3 mm and 7.5 mm, the maximum pressure induced by myocardial contraction was 25 kPa; inlet blood velocity varied between 0 and 15 cm/s. Values are presented as the ratio to the maximum magnitude.

Grahic Jump Location
Fig. 3

Blood flow velocity within (a) the normal LAD and (b) the stenosed LAD

Grahic Jump Location
Fig. 4

The maximum shear stress along the vascular wall under (a) normal and (b) stenosis conditions within the LAD

Grahic Jump Location
Fig. 5

Vascular wall (a) circumferential and (b) axial strain distribution within the normal and stenosed LAD

Grahic Jump Location
Fig. 6

Wall fluid shear stress and tensile strain as a function of time in normal and stenosed LAD, when myocardial compression was included in the model

Grahic Jump Location
Fig. 7

Wall fluid shear stress and tensile strain as a function of time in normal and stenosed LAD, when myocardial compression was not included in the model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In