0
Research Papers

Osteoporotic Hip Fracture Prediction: Is T-Score-Based Criterion Enough? A Hip Structural Analysis-Based Model

[+] Author and Article Information
Alessandra Aldieri

PolitoBIOMed Lab,
Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Corso Duca degli Abruzzi,
Turin 24-10129, Italy
e-mail: alessandra.aldieri@polito.it

Mara Terzini

PolitoBIOMed Lab,
Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Corso Duca degli Abruzzi,
Turin 24-10129, Italy
e-mail: mara.terzini@polito.it

Giangiacomo Osella

Department of Internal Medicine,
San Luigi Gonzaga University Hospital,
Regione Gonzole 10,
Orbassano 10043, Italy
e-mail: giangiacomo.osella@gmail.com

Adriano M. Priola

Department of Diagnostic Imaging,
San Luigi Gonzaga University Hospital,
University of Torino,
Regione Gonzole 10,
Orbassano 10043, Italy
e-mail: adriano.priola@inwind.it

Alberto Angeli

Department of Internal Medicine,
San Luigi Gonzaga University Hospital,
University of Torino,
Regione Gonzole 10,
Orbassano 10043, Italy
e-mail: alberto.angeli@unito.it

Andrea Veltri

Department of Diagnostic Imaging,
San Luigi Gonzaga University Hospital,
University of Torino,
Regione Gonzole 10,
Orbassano 10043, Italy
e-mail: veltri.andrea@gmail.com

Alberto L. Audenino

PolitoBIOMed Lab,
Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Corso Duca degli Abruzzi,
Turin 24-10129, Italy
e-mail: alberto.audenino@polito.it

Cristina Bignardi

PolitoBIOMed Lab,
Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Corso Duca degli Abruzzi,
Turin 24-10129, Italy
e-mail: cristina.bignardi@polito.it

Manuscript received January 26, 2018; final manuscript received May 30, 2018; published online August 20, 2018. Assoc. Editor: Anna Pandolfi.

J Biomech Eng 140(11), 111004 (Aug 20, 2018) (8 pages) Paper No: BIO-18-1054; doi: 10.1115/1.4040586 History: Received January 26, 2018; Revised May 30, 2018

At present, the current gold-standard for osteoporosis diagnosis is based on bone mineral density (BMD) measurement, which, however, has been demonstrated to poorly estimate fracture risk. Further parameters in the hands of the clinicians are represented by the hip structural analysis (HSA) variables, which include geometric information of the proximal femur cross section. The purpose of this study was to investigate the suitability of HSA parameters as additional hip fracture risk predictors. With this aim, twenty-eight three-dimensional patient-specific models of the proximal femur were built from computed tomography (CT) images and a sideways fall condition was reproduced by finite element (FE) analyses. A tensile or compressive predominance based on minimum and maximum principal strains was determined at each volume element and a risk factor (RF) was calculated. The power of HSA variables combinations to predict the maximum superficial RF values was assessed by multivariate linear regression analysis. The optimal regression model, identified through the Akaike information criterion (AIC), only comprises two variables: the buckling ratio (BR) and the neck-shaft angle (NSA). In order to validate the study, the model was tested on two additional patients who suffered a hip fracture after a fall. The results classified the patients in the high risk level, confirming the prediction power of the adopted model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Johnell, O. , Kanis, J. A. , Oden, A. , Sernbo, I. , Redlund-Johnell, I. , Petterson, C. , De Laet, C. , and Jönsson, B. , 2004, “Mortality After Osteoporotic Fractures,” Osteoporosis Int., 15(1), pp. 38–42. [CrossRef]
Hallberg, I. , Rosenqvist, A. M. , Kartous, L. , Löfman, O. , Wahlström, O. , and Toss, G. , 2004, “Health-Related Quality of Life After Osteoporotic Fractures,” Osteoporosis Int., 15(10), pp. 834–841. [CrossRef]
Gullberg, B. , Johnell, O. , and Kanis, J. A. , 1997, “World-Wide Projections for Hip Fracture,” Osteoporosis Int., 7(5), pp. 407–413. [CrossRef]
Haentjens, P. , Autier, P. , Barette, M. , Boonen, S. , and Belgian Hip Fracture, S. G. , 2001, “The Economic Cost of Hip Fractures Among Elderly Women: A One-Year, Prospective, Observational Cohort Study With Matched-Pair Analysis,” JBJS, 83(4), pp. 493–500. [CrossRef]
Center, J. R. , Nguyen, T. V. , Schneider, D. , Sambrook, P. N. , and Eisman, J. A. , 1999, “Mortality After All Major Types of Osteoporotic Fracture in Men and Women: An Observational Study,” Lancet, 353(9156), pp. 878–882. [CrossRef] [PubMed]
Cumming, R. G. , and Klineberg, R. J. , 1994, “Fall Frequency and Characteristics and the Risk of Hip Fractures,” J. Am. Geriatrics Soc., 42(7), pp. 774–778. [CrossRef]
Järvinen, T. L. , Sievänen, H. , Khan, K. M. , Heinonen, A. , and Kannus, P. , 2008, “Shifting the Focus in Fracture Prevention From Osteoporosis to Falls,” BMJ, 336(7636), p. 124. [CrossRef] [PubMed]
Khoo, B. C. C. , Lewis, J. R. , Brown, K. , and Prince, R. L. , 2016, “Evaluation of a Simplified Hip Structure Analysis Method for the Prediction of Incident Hip Fracture Events,” Osteoporosis Int., 27(1), pp. 241–248. [CrossRef]
MacNeil, J. A. M. , Adachi, J. D. , Goltzman, D. , Josse, R. G. , Kovacs, C. S. , Prior, J. C. , Olszynski, W. , Davison, K. S. , and Kaiser, S. M. , 2012, “Predicting Fracture Using 2D Finite Element Modelling,” Med. Eng. Phys., 34(4), pp. 478–484. [CrossRef] [PubMed]
Bouxsein, M. L. , 2006, “Biomechanics of Osteoporotic Fractures,” Clinical Rev. Bone Miner. Metab., 4(3), pp. 143–153. [CrossRef]
Leslie, W. D. , and Lix, L. M. , 2014, “Comparison Between Various Fracture Risk Assessment Tools,” Osteoporosis Int., 25(1), pp. 1–21. [CrossRef]
Gregory, J. S. , and Aspden, R. M. , 2008, “Femoral Geometry as a Risk Factor for Osteoporotic Hip Fracture in Men and Women,” Med. Eng. Phys., 30(10), pp. 1275–1286. [CrossRef] [PubMed]
Gnudi, S. , Sitta, E. , and Pignotti, E. , 2012, “Prediction of Incident Hip Fracture by Femoral Neck Bone Mineral Density and Neck–Shaft Angle: A 5-Year Longitudinal Study in Post-Menopausal Females,” Br. J. Radiol., 85(1016), pp. e467–e473. [CrossRef] [PubMed]
Lin, Z. L. , Li, P. F. , Pang, Z. H. , Zheng, X. H. , Huang, F. , Xu, H. H. , and Li, Q. L. , 2015, “Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis,” Cell Biochem. Biophys., 73(2), pp. 405–412. [CrossRef] [PubMed]
Sarvi, M. N. , and Luo, Y. , 2015, “A Two-Level Subject-Specific Biomechanical Model for Improving Prediction of Hip Fracture Risk,” Clin. Biomech., 30(8), pp. 881–887. [CrossRef]
Nasiri, M. , and Luo, Y. , 2016, “Study of Sex Differences in the Association Between Hip Fracture Risk and Body Parameters by DXA-Based Biomechanical Modelling,” Bone, 90, pp. 90–98. [CrossRef] [PubMed]
D'Amelio, P. , Rossi, P. , Isaia, G. , Lollino, N. , Castoldi, F. , Girardo, M. , Dettoni, F. , Sattin, F. , Delise, M. , and Bignardi, C. , 2008, “Bone Mineral Density and Singh Index Predict Bone Mechanical Properties of Human Femur,” Connect. Tissue Res., 49(2), pp. 99–104. [CrossRef] [PubMed]
Grassi, L. , Schileo, E. , Taddei, F. , Zani, L. , Juszczyk, M. , Cristofolini, L. , and Viceconti, M. , 2012, “Accuracy of Finite Element Predictions in Sideways Load Configurations for the Proximal Human Femur,” J. Biomech., 45(2), pp. 394–399. [CrossRef] [PubMed]
Koivumäki, J. E. , Thevenot, J. , Pulkkinen, P. , Kuhn, V. , Link, T. M. , Eckstein, F. , and Jämsä, T. , 2012, “CT-Based Finite Element Models Can Be Used to Estimate Experimentally Measured Failure Loads in the Proximal Femur,” Bone, 50(4), pp. 824–829. [CrossRef] [PubMed]
Nishiyama, K. K. , Gilchrist, S. , Guy, P. , Cripton, P. , and Boyd, S. K. , 2013, “Proximal Femur Bone Strength Estimated by a Computationally Fast Finite Element Analysis in a Sideways Fall Configuration,” J. Biomech., 46(7), pp. 1231–1236. [CrossRef] [PubMed]
Schileo, E. , Balistreri, L. , Grassi, L. , Cristofolini, L. , and Taddei, F. , 2014, “To What Extent Can Linear Finite Element Models of Human Femora Predict Failure Under Stance and Fall Loading Configurations?,” J. Biomech., 47(14), pp. 3531–3538. [CrossRef] [PubMed]
Dragomir-Daescu, D. , Den Buijs, J. O. , McEligot, S. , Dai, Y. , Entwistle, R. C. , Salas, C. , Melton, L. J. , Bennet, K. E. , Khosla, S. , and Amin, S. , 2011, “Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip,” Ann. Biomed. Eng., 39(2), pp. 742–755. [CrossRef] [PubMed]
Zanetti, E. M. , and Bignardi, C. , 2009, “Structural Analysis of Skeletal Body Elements: Numerical and Experimental Methods,” Biomechanical Systems Technology (Muscular Skeletal Systems, Vol. 3), Los Angels, CA.
Nishiyama, K. K. , Ito, M. , Harada, A. , and Boyd, S. K. , 2014, “Classification of Women With and Without Hip Fracture Based on Quantitative Computed Tomography and Finite Element Analysis,” Osteoporosis Int., 25(2), pp. 619–626. [CrossRef]
Morgan, E. F. , Bayraktar, H. H. , and Keaveny, T. M. , 2003, “Trabecular Bone Modulus–Density Relationships Depend on Anatomic Site,” J. Biomech., 36(7), pp. 897–904. [CrossRef] [PubMed]
Schileo, E. , Taddei, F. , Malandrino, A. , Cristofolini, L. , and Viceconti, M. , 2007, “Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones,” J. Biomech., 40(13), pp. 2982–2989. [CrossRef] [PubMed]
Rho, J. Y. , Hobatho, M. C. , and Ashman, R. B. , 1995, “Relations of Mechanical Properties to Density and CT Numbers in Human Bone,” Med. Eng. Phys., 17(5), pp. 347–355. [CrossRef] [PubMed]
Robinovitch, S. N. , Hayes, W. C. , and McMahon, T. A. , 1991, “Prediction of Femoral Impact Forces in Falls on the Hip,” ASME J. Biomech. Eng., 113(4), pp. 366–374. [CrossRef]
Robinovitch, S. N. , McMahon, T. A. , and Hayes, W. C. , 1995, “Force Attenuation in Trochanteric Soft Tissues During Impact From a Fall,” J. Orthop. Res., 13(6), pp. 956–962. [CrossRef] [PubMed]
Levine, I. C. , Bhan, S. , and Laing, A. C. , 2013, “The Effects of Body Mass Index and Sex on Impact Force and Effective Pelvic Stiffness During Simulated Lateral Falls,” Clin. Biomech., 28(9–10), pp. 1026–1033. [CrossRef]
Van den Kroonenberg, A. J. , Hayes, W. C. , and McMahon, T. A. , 1995, “Dynamic Models for Sideways Falls From Standing Height,” Trans.-Am. Soc. Mech. Eng. J. Biomech. Eng., 117(3), pp. 309–309. [CrossRef]
Armstrong, C. G. , Bahrani, A. S. , and Gardner, D. L. , 1979, “In Vitro Measurement of Articular Cartilage Deformations in the Intact Human Hip Joint Under Load,” JBJS, 61(5), pp. 744–755. [CrossRef]
Fermor, H. L. , McLure, S. W. D. , Taylor, S. D. , Russell, S. L. , Williams, S. , Fisher, J. , and Ingham, E. , 2015, “Biological, Biochemical and Biomechanical Characterisation of Articular Cartilage From the Porcine, Bovine and Ovine Hip and Knee,” Bio-Med. Mater. Eng., 25(4), pp. 381–395. [CrossRef]
Schileo, E. , Taddei, F. , Cristofolini, L. , and Viceconti, M. , 2008, “Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro,” J. Biomech., 41(2), pp. 356–367. [CrossRef] [PubMed]
Bayraktar, H. H. , Morgan, E. F. , Niebur, G. L. , Morris, G. E. , Wong, E. K. , and Keaveny, T. M. , 2004, “Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue,” J. Biomech., 37(1), pp. 27–35. [CrossRef] [PubMed]
Beck, T. J. , Ruff, C. B. , Warden, K. E. , Scott, J. W. , and Rao, G. U. , 1990, “Predicting Femoral Neck Strength From Bone Mineral Data: A Structural Approach,” Invest. Radiol., 25(1), pp. 6–18. [CrossRef] [PubMed]
Kaptoge, S. , Beck, T. J. , Reeve, J. , Stone, K. L. , Hillier, T. A. , Cauley, J. A. , and Cummings, S. R. , 2008, “Prediction of Incident Hip Fracture Risk by Femur Geometry Variables Measured by Hip Structural Analysis in the Study of Osteoporotic Fractures,” J. Bone Miner. Res., 23(12), pp. 1892–1904. [CrossRef] [PubMed]
Akaike, H. , 1974, “A New Look at the Statistical Model Identification,” IEEE Trans. Autom. Control, 19(6), pp. 716–723. [CrossRef]
Gallo, D. , Steinman, D. A. , Bijari, P. B. , and Morbiducci, U. , 2012, “Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear,” J. Biomech., 45(14), pp. 2398–2404. [CrossRef] [PubMed]
Marshall, D. , Johnell, O. , and Wedel, H. , 1996, “Meta-Analysis of How Well Measures of Bone Mineral Density Predict Occurrence of Osteoporotic Fractures,” BMJ, 312(7041), pp. 1254–1259. [CrossRef] [PubMed]
Schuit, S. C. E. , Van der Klift, M. , Weel, A. E. A. M. , De Laet, C. E. D. H. , Burger, H. , Seeman, E. , Hofman, A. , Uitterlinden, A. G. , Van Leeuwen, J. P. T. M. , and Pols, H. A. P. , 2004, “Fracture Incidence and Association With Bone Mineral Density in Elderly Men and Women: The Rotterdam Study,” Bone, 34(1), pp. 195–202. [CrossRef] [PubMed]
Kanis, J. A. , Borgstrom, F. , De Laet, C. , Johansson, H. , Johnell, O. , Jonsson, B. , Oden, A. , Zethraeus, N. , Pfleger, B. , and Khaltaev, N. , 2005, “Assessment of Fracture Risk,” Osteoporosis Int., 16(6), pp. 581–589. [CrossRef]
Langsetmo, L. , Goltzman, D. , Kovacs, C. S. , Adachi, J. D. , Hanley, D. A. , Kreiger, N. , Josse, R. , Papaioannou, A. , Olszynski, W. P. , and Jamal, S. A. , 2009, “Repeat Low‐Trauma Fractures Occur Frequently Among Men and Women Who Have Osteopenic BMD,” J. Bone Miner. Res., 24(9), pp. 1515–1522. [CrossRef] [PubMed]
Häuselmann, H. J. , and Rizzoli, R. , 2003, “A Comprehensive Review of Treatments for Postmenopausal Osteoporosis,” Osteoporosis Int., 14(1), pp. 2–12. [CrossRef]
Watkins, M. P. , Norris, J. Y. , Grimston, S. K. , Zhang, X. , Phipps, R. J. , Ebetino, F. H. , and Civitelli, R. , 2012, “Bisphosphonates Improve Trabecular Bone Mass and Normalize Cortical Thickness in Ovariectomized, Osteoblast connexin43 Deficient Mice,” Bone, 51(4), pp. 787–794. [CrossRef] [PubMed]
Zanetti, E. M. , Crupi, V. , Bignardi, C. , and Calderale, P. M. , 2005, “Radiograph-Based Femur Morphing Method,” Med. Biol. Eng. Comput., 43(2), pp. 181–188. [CrossRef] [PubMed]
Koivumäki, J. E. , Thevenot, J. , Pulkkinen, P. , Kuhn, V. , Link, T. M. , Eckstein, F. , and Jämsä, T. , 2012, “Cortical Bone Finite Element Models in the Estimation of Experimentally Measured Failure Loads in the Proximal Femur,” Bone, 51(4), pp. 737–740. [CrossRef] [PubMed]
Naylor, K. E. , McCloskey, E. V. , Eastell, R. , and Yang, L. , 2013, “Use of DXA‐Based Finite Element Analysis of the Proximal Femur in a Longitudinal Study of Hip Fracture,” J. Bone Miner. Res., 28(5), pp. 1014–1021. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 5

Comparison between the RF̂ and the RF̂HSA values for each patient. The maximum superficial RF as extracted from the FE models and its corresponding value as estimated by the regression model are significantly correlated (r = 0.774, p < 0.001). The regression line has also been reported.

Grahic Jump Location
Fig. 4

Superficial RF distribution for the 28 patient-specific models. Only values above the 90th percentile are shown.

Grahic Jump Location
Fig. 3

Volumetric RF distribution for the 28 patient-specific models. Only values above the 90th percentile are shown.

Grahic Jump Location
Fig. 2

Overview of the anatomical sites NN, IT, FS on which the HSA method is performed. Some HSA parameters are highlighted. AB: width (W) at the NN site; CD: HAL identified on the neck axis between points D (which represents the pelvic brim) and C (the outer margin of the greater trochanter); the NSA is highlighted in gray, between the neck and shaft axes.

Grahic Jump Location
Fig. 1

Boundary conditions applied to reproduce the sideways fall: (A) head nodes were bounded to the ground through spring elements with 10,000 N/mm stiffness, (B) a patient-specific load was applied on the trochanteric surface, and (C) distal nodes of the proximal femur were connected to a spherical joint placed 0.1 m distally by means of link elements

Grahic Jump Location
Fig. 6

Comparison between the RF̂ and the T-score values for each patient. Absolute values of T-score have been considered, highlighting the three standard ranges of the T-score-based criterion: |T-score| < 1 normal, 1 < |T-score| < 2.5 osteopaenic and |T-score| > 2.5 osteoporotic. Three different risk levels have been also defined according to RF̂ values: RF̂ < 2 = low risk, 2 < RF̂ < 3 = medium risk, and RF̂ > 3 = high risk. Filled circles refer to the two fractured patients' RF̂HSA. RF̂ and T-score outcomes result to be significantly correlated (r = 0.529, p = 0.002).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In