0
Research Papers

Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone

[+] Author and Article Information
Subhomoy Chatterjee

Materials Research Centre,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India;
Translational Center on Biomaterials for
Orthopaedic and Dental Applications,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India

Sabine Kobylinski

Materials Research Centre,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India;
Centre for BioSystems and Engineering,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India;
Technical University of Applied Sciences
Regensburg (OTH Regensburg),
Regensburg 93047, Germany

Bikramjit Basu

Materials Research Centre,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India;
Translational Center on Biomaterials for
Orthopaedic and Dental Applications,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India;
Centre for BioSystems and Engineering,
Indian Institute of Science,
Bengaluru 560012, Karnataka, India
e-mails: bikram@iisc.ac.in;
bikram.iisc@gmail.com

1S. Chatterjee, S. Kobylinski, and B. Basu contributed equally to this work.

2Corresponding author.

Manuscript received January 8, 2018; final manuscript received May 6, 2018; published online July 3, 2018. Assoc. Editor: Guy M. Genin.

J Biomech Eng 140(10), 101014 (Jul 03, 2018) (12 pages) Paper No: BIO-18-1011; doi: 10.1115/1.4040249 History: Received January 08, 2018; Revised May 06, 2018

The implant stability and biomechanical response of periprosthetic bone in acetabulum around total hip joint replacement (THR) devices depend on a host of parameters, including design of articulating materials, gait cycle and subject parameters. In this study, the impact of shell design (conventional, finned, spiked, and combined design) and liner material on the biomechanical response of periprosthetic bone has been analyzed using finite element (FE) method. Two different liner materials: high density polyethylene–20% hydroxyapatite–20% alumina (HDPE–20%HA–20%Al2O3) and highly cross-linked ultrahigh molecular weight polyethylene (HC-UHMWPE) were used. The subject parameters included bone condition and bodyweight. Physiologically relevant load cases of a gait cycle were considered. The deviation of mechanical condition of the periprosthetic bone due to implantation was least for the finned shell design. No significant deviation was observed at the bone region adjacent to the spikes and the fins. This study recommends the use of the finned design, particularly for weaker bone conditions. For stronger bones, the combined design may also be recommended for higher stability. The use of HC-UHMWPE liner was found to be better for convensional shell design. However, similar biomechanical response was captured in our FE analysis for both the liner materials in case of other shell designs. Overall, the study establishes the biomechanical response of periprosthetic bone in the acetabular with preclinically tested liner materials together with new shell design for different subject conditions.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Simoes, J. , Marques, A. , and Jeronimidis, G. , 2000, “ Design of a Controlled-Stiffness Composite Proximal Femoral Prosthesis,” Compos. Sci. Technol., 60(4), pp. 559–567. [CrossRef]
Cilingir, A. C. , 2010, “ Finite Element Analysis of the Contact Mechanics of Ceramic-on-Ceramic Hip Resurfacing Prostheses,” J. Bionic Eng., 7(3), pp. 244–253. [CrossRef]
Basu, B. , 2017, Biomaterials Science and Tissue Engineering: Principles and Methods, Cambridge University Press, Cambridge, UK.
Basu, B. , and Ghosh, S. , 2007, Biomaterials for Musculoskeletal Regeneration: Applications; Concepts (Indian Institute of Metals Series), Springer Nature, Berlin.
Essner, A. , Sutton, K. , and Wang, A. , 2005, “ Hip Simulator Wear Comparison of Metal-on-Metal, Ceramic-on-Ceramic and Crosslinked UHMWPE Bearings,” Wear, 259(7–12), pp. 992–995. [CrossRef]
Warashina, H. , Sakano, S. , Kitamura, S. , Yamauchi, K.-I. , Yamaguchi, J. , Ishiguro, N. , and Hasegawa, Y. , 2003, “ Biological Reaction to Alumina, Zirconia, Titanium and Polyethylene Particles Implanted Onto Murine Calvaria,” Biomaterials, 24(21), pp. 3655–3661. [CrossRef] [PubMed]
Hallab, N. J. , and Jacobs, J. J. , 2009, “ Biologic Effects of Implant Debris,” Bull. NYU Hosp. Jt. Dis., 67(2), p. 182. https://pdfs.semanticscholar.org/f426/98bc0866ee6a7ec4fe3e3a128ab1fde6a414.pdf [PubMed]
Schmalzried, T. P. , Kwong, L. M. , Jasty, M. , Sedlacek, R. C. , Haire, T. C. , O'connor, D. O. , Bragdon, C. R. , Kabo, J. M. , Malcolm, A. J. , and Harris, W. H. , 1992, “ The Mechanism of Loosening of Cemented Acetabular Components in Total Hip Arthroplasty: Analysis of Specimens Retrieved at Autopsy,” Clin. Orthop. Relat. Res., 274, pp. 60–78.
Willert, H.-G. , Bertram, H. , and Buchhorn, G. H. , 1990, “ Osteolysis in Alloarthroplasty of the Hip: The Role of Ultra-High Molecular Weight Polyethylene Wear Particles,” Clin. Orthop. Relat. Res., 258, pp. 95–107.
Muratoglu, O., K. , Bragdon, C. R. , and O'™Connor, D. O. , 2001, “ A Novel Method of Crosslinking UHMWPE to Improve Wear, Reduce Oxidation and Retain Mechanical Properties,” Arthroplasty, 16(2), pp. 1–12.
Muratoglu, O. K. , Bragdon, C. R. , O'Connor, D. O. , Jasty, M. , Harris, W. H. , Gul, R. , and McGarry, F. , 1999, “ Unified Wear Model for Highly Crosslinked Ultra-High Molecular Weight Polyethylenes (UHMWPE),” Biomaterials, 20(16), pp. 1463–1470. [CrossRef] [PubMed]
Muratoglu, O. K. , Bragdon, C. R. , O'Connor, D. , Perinchief, R. S. , Estok, D. M. , Jasty, M. , and Harris, W. H. , 2001, “ Larger Diameter Femoral Heads Used in Conjunction With a Highly Cross-Linked Ultra–High Molecular Weight Polyethylene: A New Concept,” J. Arthroplasty, 16(8), pp. 24–30. [CrossRef] [PubMed]
Nath, S. , Bodhak, S. , and Basu, B. , 2009, “ HDPE–Al2O3–HAp Composites for Biomedical Applications: Processing and Characterizations,” J. Biomed. Mater. Res. Part B: Appl. Biomater., 88(1), pp. 1–11. [CrossRef] [PubMed]
Bodhak, S. , Nath, S. , and Basu, B. , 2009, “ Friction and Wear Properties of Novel HDPE–Hap–Al2O3 Biocomposites Against Alumina Counterface,” J. Biomater. Appl., 23(5), pp. 407–433. [CrossRef] [PubMed]
Saha, N. , Dubey, A. K. , and Basu, B. , 2012, “ Cellular Proliferation, Cellular Viability, and Biocompatibility of HA–ZnO Composites,” J. Biomed. Mater. Res. Part B: Appl. Biomater., 100(1), pp. 256–264. [CrossRef] [PubMed]
Saha, N. , Keskinbora, K. , Suvaci, E. , and Basu, B. , 2010, “ Sintering, Microstructure, Mechanical, and Antimicrobial Properties of HAp–ZnO Biocomposites,” J. Biomed. Mater. Res. Part B: Appl. Biomater., 95(2), pp. 430–440. [CrossRef] [PubMed]
Tripathi, G. , Gough, J. E. , Dinda, A. , and Basu, B. , 2013, “ In Vitro Cytotoxicity and In Vivo Osseointergration Properties of Compression‐Molded HDPE–HA–Al2O3 Hybrid Biocomposites,” J. Biomed. Mater. Res. Part A, 101(6), pp. 1539–1549. [CrossRef]
Tripathi, G. , and Basu, B. , 2014, “ In Vitro Osteogenic Cell Proliferation, Mineralization, and In Vivo Osseointegration of Injection Molded High-Density Polyethylene-Based Hybrid Composites in Rabbit Animal Model,” J. Biomater. Appl., 29(1), pp. 142–157. [CrossRef] [PubMed]
Tripathi, G. , Dubey, A. K. , and Basu, B. , 2012, “ Evaluation of Physico‐Mechanical Properties and In Vitro Biocompatibility of Compression Molded HDPE Based Biocomposites With HA/Al2O3 Ceramic Fillers and Titanate Coupling Agents,” J. Appl. Polym. Sci., 124(4), pp. 3051–3063. [CrossRef]
Nath, S. , Bodhak, S. , and Basu, B. , 2007, “ Tribological Investigation of Novel HDPE‐HAp‐Al2O3 Hybrid Biocomposites against Steel Under Dry and Simulated Body Fluid Condition,” J. Biomed. Mater. Res. Part A, 83(1), pp. 191–208. [CrossRef]
Moskal, J. T. , Danisa, O. A. , and Shaffrey, C. I. , 1997, “ Isolated Revision Acetabuloplasty Using a Porous-Coated Cementless Acetabular Component Without Removal of a Well-Fixed Femoral Component: A 3-to 9-Year Follow-Up Study,” J. Arthroplasty, 12(7), pp. 719–727. [CrossRef] [PubMed]
Paprosky, W. G. , Perona, P. G. , and Lawrence, J. M. , 1994, “ Acetabular Defect Classification and Surgical Reconstruction in Revision Arthroplasty: A 6-Year Follow-Up Evaluation,” J. Arthroplasty, 9(1), pp. 33–44. [CrossRef] [PubMed]
Silverton, C. D. , Rosenberg, A. G. , Sheinkop, M. B. , Kull, L. R. , and Galante, J. O. , 1996, “ Revision of the Acetabular Component Without Cement after Total Hip Arthroplasty. A Follow-Up Note regarding Results at Seven to Eleven Years,” JBJS, 78(9), pp. 1366–1370. [CrossRef]
Tanzer, M. , Drucker, D. , Jasty, M. , McDonald, M. , and Harris, W. , 1992, “ Revision of the Acetabular Component With an Uncemented Harris-Galante Porous-Coated Prosthesis,” JBJS, 74(7), pp. 987–994. [CrossRef]
Scholes, S. , and Unsworth, A. , 2007, “ The Wear Properties of CFR-PEEK-OPTIMA Articulating against Ceramic Assessed on a Multidirectional Pin-on-Plate Machine,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 221(3), pp. 281–289. [CrossRef]
Scholes, S. , Inman, I. , Unsworth, A. , and Jones, E. , 2008, “ Tribological Assessment of a Flexible Carbon-Fibre-Reinforced Poly (Ether–Ether–Ketone) Acetabular Cup Articulating against an Alumina Femoral Head,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 222(3), pp. 273–283. [CrossRef]
Ghosh, R. , and Gupta, S. , 2014, “ Bone Remodelling around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions,” J. Mech. Behav. Biomed. Mater., 32, pp. 257–269. [CrossRef] [PubMed]
Manley, M. T. , and Sutton, K. , 2008, “ Bearings of the Future for Total Hip Arthroplasty,” J. Arthroplasty, 23(7 Suppl.), pp. 47–50. [CrossRef] [PubMed]
Field, R. E. , Rajakulendran, K. , Eswaramoorthy, V. K. , and Rushton, N. , 2012, “ Three-Year Prospective Clinical and Radiological Results of a New Flexible Horseshoe Acetabular Cup,” Hip Int., 22(6), pp. 598–606. [CrossRef] [PubMed]
Ma, W. , Zhang, X. , Wang, J. , Zhang, Q. , Chen, W. , and Zhang, Y. , 2013, “ Optimized Design for a Novel Acetabular Component With Three Wings. A Study of Finite Element Analysis,” J. Surg. Res., 179(1), pp. 78–86. [CrossRef] [PubMed]
Ito, H. , Matsuno, T. , Aoki, Y. , and Minami, A. , 2003, “ Acetabular Components Without Bulk Bone Graft in Revision Surgery: A 5-to 13-Year Follow-Up Study,” J. Arthroplasty, 18(2), pp. 134–139. [CrossRef] [PubMed]
Hendricks, K. J. , and Harris, W. H. , 2006, “ Revision of Failed Acetabular Components With Use of so-Called Jumbo Noncemented Components: A Concise Follow-Up of a Previous Report,” JBJS, 88(3), pp. 559–563.
Patel, J. , Masonis, J. , Bourne, R. , and Rorabeck, C. , 2003, “ The Fate of Cementless Jumbo Cups in Revision Hip Arthroplasty,” J. Arthroplasty, 18(2), pp. 129–133. [CrossRef] [PubMed]
Winter, E. , Piert, M. , Volkmann, R. , Maurer, F. , Eingartner, C. , Weise, K. , and Weller, S. , 2001, “ Allogeneic Cancellous Bone Graft and a Burch–Schneider Ring for Acetabular Reconstruction in Revision Hip Arthroplasty,” JBJS, 83(6), pp. 862–867. [CrossRef]
Kawanabe, K. , Akiyama, H. , Onishi, E. , and Nakamura, T. , 2007, “ Revision Total Hip Replacement Using the Kerboull Acetabular Reinforcement Device With Morsellised or Bulk Graft,” Bone Jt. J., 89(1), pp. 26–31. [CrossRef]
Abeyta, P. N. , Namba, R. S. , Janku, G. V. , Murray, W. R. , and Kim, H. T. , 2008, “ Reconstruction of Major Segmental Acetabular Defects With an Oblong-Shaped Cementless Prosthesis: A Long-Term Outcomes Study,” J. Arthroplasty, 23(2), pp. 247–253. [CrossRef] [PubMed]
Berry, D. J. , Sutherland, C. J. , Trousdale, R. T. , Colwell , C. W., Jr. , Chandler, H. P. , Ayres, D. , and Yashar, A. A. , 2000, “ Bilobed Oblong Porous Coated Acetabular Components in Revision Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 371, pp. 154–160. [CrossRef]
Aldinger, P. R. , Thomsen, M. , Lukoschek, M. , Mau, H. , Ewerbeck, V. , and Breusch, S. J. , 2004, “ Long-Term Fate of Uncemented, Threaded Acetabular Components With Smooth Surface Treatment: Minimum 10-Year Follow-Up of Two Different Designs,” Arch. Orthop. Trauma Surg., 124(7), pp. 469–475. [CrossRef] [PubMed]
Baleani, M. , Fognani, R. , and Toni, A. , 2001, “ Initial Stability of a Cementless Acetabular Cup Design: Experimental Investigation on the Effect of Adding Fins to the Rim of the Cup,” Artif. Organs, 25(8), pp. 664–669. [CrossRef] [PubMed]
Perona, P. G. , Lawrence, J. , Paprosky, W. G. , Patwardhan, A. G. , and Sartori, M. , 1992, “ Acetabular Micromotion as a Measure of Initial Implant Stability in Primary Hip Arthroplasty: An In Vitro Comparison of Different Methods of Intial Acetabular Component Fixation,” J. Arthroplasty, 7(4), pp. 537–547. [CrossRef] [PubMed]
Korhonen, R. K. , Koistinen, A. , Konttinen, Y. T. , Santavirta, S. S. , and Lappalainen, R. , 2005, “ The Effect of Geometry and Abduction Angle on the Stresses in Cemented UHMWPE Acetabular Cups–Finite Element Simulations and Experimental Tests,” Biomed. Eng. Online, 4(1), p. 32. [CrossRef] [PubMed]
Kennedy, J. , Rogers, W. , Soffe, K. , Sullivan, R. , Griffen, D. , and Sheehan, L. , 1998, “ Effect of Acetabular Component Orientation on Recurrent Dislocation, Pelvic Osteolysis, Polyethylene Wear, and Component Migration,” J. Arthroplasty, 13(5), pp. 530–534. [CrossRef] [PubMed]
Small, S. R. , Berend, M. E. , Howard, L. A. , Tunç, D. , Buckley, C. A. , and Ritter, M. A. , 2013, “ Acetabular Cup Stiffness and Implant Orientation Change Acetabular Loading Patterns,” J. Arthroplasty, 28(2), pp. 359–367. [CrossRef] [PubMed]
Hirakawa, K. , Mitsugi, N. , Koshino, T. , Saito, T. , Hirasawa, Y. , and Kubo, T. , 2001, “ Effect of Acetabular Cup Position and Orientation in Cemented Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 388, pp. 135–142. [CrossRef]
Craiovan, B. , Renkawitz, T. , Weber, M. , Grifka, J. , Nolte, L. , and Zheng, G. , 2014, “ Is the Acetabular Cup Orientation after Total Hip Arthroplasty on a Two Dimension or Three Dimension Model Accurate?,” Int. Orthop., 38(10), pp. 2009–2015. [CrossRef] [PubMed]
Van Houcke, J. , Khanduja, V. , Pattyn, C. , and Audenaert, E. , 2017, “ The History of Biomechanics in Total Hip Arthroplasty,” Indian J. Orthop., 51(4), p. 359. [CrossRef] [PubMed]
Little, N. J. , Busch, C. A. , Gallagher, J. A. , Rorabeck, C. H. , and Bourne, R. B. , 2009, “ Acetabular Polyethylene Wear and Acetabular Inclination and Femoral Offset,” Clin. Orthop. Relat. Res., 467(11), p. 2895. [CrossRef] [PubMed]
Biedermann, R. , Tonin, A. , Krismer, M. , Rachbauer, F. , Eibl, G. , and Stöckl, B. , 2005, “ Reducing the Risk of Dislocation After Total Hip Arthroplasty,” Bone Jt. J., 87(6), pp. 762–769. [CrossRef]
De Haan, R. , Pattyn, C. , Gill, H. , Murray, D. , Campbell, P. , and De Smet, K. , 2008, “ Correlation Between Inclination of the Acetabular Component and Metal Ion Levels in Metal-on-Metal Hip Resurfacing Replacement,” Bone Jt. J., 90(10), pp. 1291–1297. [CrossRef]
Wan, Z. , Boutary, M. , and Dorr, L. D. , 2008, “ The Influence of Acetabular Component Position on Wear in Total Hip Arthroplasty,” J. Arthroplasty, 23(1), pp. 51–56. [CrossRef] [PubMed]
D'lima, D. D. , Urquhart, A. G. , Buehler, K. O. , Walker, R. H. , and Colwell, C. W. , 2000, “ The Effect of the Orientation of the Acetabular and Femoral Components on the Range of Motion of the Hip at Different Head-Neck Ratios,” JBJS, 82(3), pp. 315–321. [CrossRef]
Hisatome, T. , and Doi, H. , 2011, “ Theoretically Optimum Position of the Prosthesis in Total Hip Arthroplasty to Fulfill the Severe Range of Motion Criteria Due to Neck Impingement,” J. Orthop. Sci., 16(2), pp. 229–237. [CrossRef] [PubMed]
Malik, A. , Maheshwari, A. , and Dorr, L. D. , 2007, “ Impingement With Total Hip Replacement,” JBJS, 89(8), pp. 1832–1842.
Hart, A. , Ilo, K. , Underwood, R. , Cann, P. , Henckel, J. , Lewis, A. , Cobb, J. , and Skinner, J. , 2011, “ The Relationship Between the Angle of Version and Rate of Wear of Retrieved Metal-on-Metal Resurfacings,” J. Bone Jt. Surg Br., 93(3), pp. 315–320. [CrossRef]
Hart, A. , Muirhead-Allwood, S. , Porter, M. , Matthies, A. , Ilo, K. , Maggiore, P. , Underwood, R. , Cann, P. , Cobb, J. , and Skinner, J. , 2013, “ Which Factors Determine the Wear Rate of Large-Diameter Metal-on-Metal Hip Replacements?: Multivariate Analysis of Two Hundred and Seventy-Six Components,” JBJS, 95(8), pp. 678–685. [CrossRef]
Brown, T. D. , and Callaghan, J. J. , 2008, “ Impingement in Total Hip Replacement: Mechanisms and Consequences,” Curr. Orthop., 22(6), pp. 376–391. [CrossRef] [PubMed]
Massoud, S. N. , Hunter, J. B. , Holdsworth, B. J. , Wallace, W. A. , and Juliusson, R. , 1997, “ Early Femoral Loosening in One Design of Cemented Hip Replacement,” J. Bone Jt. Surg Br., 79(4), pp. 603–608. [CrossRef]
Cipriano, C. A. , Issack, P. S. , Beksaç, B. , Della Valle, A. G. , Sculco, T. P. , and Salvati, E. A. , 2008, “ Metallosis after Metal-on-Polyethylene Total Hip Arthroplasty,” Am. J. Orthop. (Belle Mead NJ), 37(2), pp. E18–E25. https://www.researchgate.net/publication/5452207_Metallosis_after_metal-on-polyethylene_total_hip_arthroplasty [PubMed]
Wagner, P. , Olsson, H. , Ranstam, J. , Robertsson, O. , Zheng, M. H. , and Lidgren, L. , 2012, “ Metal-on-Metal Joint Bearings and Hematopoetic Malignancy: A Review,” Acta Orthop., 83(6), pp. 553–558. [CrossRef] [PubMed]
Fisher, J. , 2011, “ Bioengineering Reasons for the Failure of Metal-on-Metal Hip Prostheses,” J. Bone Jt. Surg. Br., 93(8), pp. 1001–1004. [CrossRef]
Langton, D. , Jameson, S. , Joyce, T. , Gandhi, J. , Sidaginamale, R. , Mereddy, P. , Lord, J. , and Nargol, A. , 2011, “ Accelerating Failure Rate of the ASR Total Hip Replacement,” J. Bone Jt. Surg. Br., 93(8), pp. 1011–1016. [CrossRef]
Harris, W. H. , 2012, “ Edge Loading Has a Paradoxical Effect on Wear in Metal-on-Polyethylene Total Hip Arthroplasties,” Clin. Orthop. Relat. Res., 470(11), pp. 3077–3082. [CrossRef] [PubMed]
Hua, X. , Wang, L. , Al-Hajjar, M. , Jin, Z. , Wilcox, R. K. , and Fisher, J. , 2014, “ Experimental Validation of Finite Element Modelling of a Modular Metal-on-Polyethylene Total Hip Replacement,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 228(7), pp. 682–692. [CrossRef]
Stops, A. , Wilcox, R. , and Jin, Z. , 2012, “ Computational Modelling of the Natural Hip: A Review of Finite Element and Multibody Simulations,” Comput. Methods Biomech. Biomed. Eng., 15(9), pp. 963–979. [CrossRef]
Kraaij, G. , Zadpoor, A. A. , Tuijthof, G. J. , Dankelman, J. , Nelissen, R. G. , and Valstar, E. R. , 2014, “ Mechanical Properties of Human Bone–Implant Interface Tissue in Aseptically Loose Hip Implants,” J. Mech. Behav. Biomed. Mater., 38, pp. 59–68. [CrossRef] [PubMed]
Yamako, G. , Chosa, E. , Totoribe, K. , Hanada, S. , Masahashi, N. , Yamada, N. , and Itoi, E. , 2014, “ In-Vitro Biomechanical Evaluation of Stress Shielding and Initial Stability of a Low-Modulus Hip Stem Made of β Type Ti–33.6 Nb–4Sn Alloy,” Medical Engineering Physics, 36(12), pp. 1665–1671. [CrossRef] [PubMed]
Yamako, G. , Chosa, E. , Zhao, X. , Totoribe, K. , Watanabe, S. , Sakamoto, T. , and Nakane, N. , 2014, “ Load-Transfer Analysis after Insertion of Cementless Anatomical Femoral Stem Using Pre-and Post-Operative CT Images Based Patient-Specific Finite Element Analysis,” Med. Eng. Phys., 36(6), pp. 694–700. [CrossRef] [PubMed]
Nixon, M. , Taylor, G. , Sheldon, P. , Iqbal, S. , and Harper, W. , 2007, “ Does Bone Quality Predict Loosening of Cemented Total Hip Replacements?,” Bone Jt. J., 89(10), pp. 1303–1308. https://pdfs.semanticscholar.org/b884/946a0a98cb8a68169824cca14907c9259dcb.pdf
Noyama, Y. , Miura, T. , Ishimoto, T. , Itaya, T. , Niinomi, M. , and Nakano, T. , 2012, “ Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty Under Stress-Shielding Effects by Titanium-Based Implant,” Mater. Trans., 53(3), pp. 565–570. [CrossRef]
Klaassen, M. A. , Martínez-Villalobos, M. , Pietrzak, W. S. , Mangino, G. P. , and Guzman, D. C. , 2009, “ Midterm Survivorship of a Press-Fit, Plasma-Sprayed, Tri-Spike Acetabular Component,” J. Arthroplasty, 24(3), pp. 391–399. [CrossRef] [PubMed]
Mak, M. , Besong, A. , Jin, Z. , and Fisher, J. , 2002, “ Effect of Microseparation on Contact Mechanics in Ceramic-on-Ceramic Hip Joint Replacements,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 216(6), pp. 403–408. [CrossRef]
Saikko, V. , 2016, “ Effect of Increased Load on the Wear of a Large Diameter Metal-on-Metal Modular Hip Prosthesis With a High Inclination Angle of the Acetabular Cup,” Tribol. Int., 96, pp. 149–154. [CrossRef]
Malviya, A. , Abdul, N. , and Khanduja, V. , 2017, “ Outcomes Following Total Hip Arthroplasty: A Review of the Registry Data,” Indian J. Orthop., 51(4), p. 405. [CrossRef] [PubMed]
Wik, T. , Enoksen, C. , Klaksvik, J. , Østbyhaug, P. , Foss, O. , Ludvigsen, J. , and Aamodt, A. , 2011, “ In Vitro Testing of the Deformation Pattern and Initial Stability of a Cementless Stem Coupled to an Experimental Femoral Head, With Increased Offset and Altered Femoral Neck Angles,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 225(8), pp. 797–808. [CrossRef]
Cash, D. J. , and Khanduja, V. , 2014, “ The Case for Ceramic-on-Polyethylene as the Preferred Bearing for a Young Adult Hip Replacement,” HIP International, 24(5), pp. 421–427.
Urban, J. A. , Garvin, K. L. , Boese, C. K. , Bryson, L. , Pedersen, D. R. , Callaghan, J. J. , and Miller, R. K. , 2001, “ Ceramic-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty: Seventeen to Twenty-One-Year Results,” JBJS, 83(11), pp. 1688–1694. [CrossRef]
Jonkers, I. , Sauwen, N. , Lenaerts, G. , Mulier, M. , Van der Perre, G. , and Jaecques, S. , 2008, “ Relation Between Subject-Specific Hip Joint Loading, Stress Distribution in the Proximal Femur and Bone Mineral Density Changes After Total Hip Replacement,” J. Biomech., 41(16), pp. 3405–3413. [CrossRef] [PubMed]
Ghosh, R. , Mukherjee, K. , and Gupta, S. , 2013, “ Bone Remodelling around Uncemented Metallic and Ceramic Acetabular Components,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 227(5), pp. 490–502. [CrossRef]
Ghosh, R. , Pal, B. , Ghosh, D. , and Gupta, S. , 2015, “ Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain,” Comput. Methods Biomech. Biomed. Eng., 18(7), pp. 697–710. [CrossRef]
Taddei, F. , Pancanti, A. , and Viceconti, M. , 2004, “ An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models,” Med. Eng. Phys., 26(1), pp. 61–69. [CrossRef] [PubMed]
Anderson, D. E. , and Madigan, M. L. , 2013, “ Effects of Age-Related Differences in Femoral Loading and Bone Mineral Density on Strains in the Proximal Femur During Controlled Walking,” J. Appl. Biomech., 29(5), pp. 505–516. [CrossRef] [PubMed]
Li, J. , Liu, Y. , Hermansson, L. , and Soremark, R. , 1993, “ Evaluation of Biocompatibility of Various Ceramic Powders With Human Fibroblasts In Vitro,” Clin. Mater., 12, pp. 197–201.
Zhang, M. , Pare, P. , King, R. , and James, S. P. , 2007, “ A Novel Ultra High Molecular Weight Polyethylene–Hyaluronan Microcomposite for Use in Total Joint Replacements. II. Mechanical and Tribological Property Evaluation,” J. Biomed. Mater. Res. A, 82(1), pp. 18–26.
Khorasani, A. M. , Gibson, I. , Chegini, N. G. , Goldberg, M. , Ghasemi, A. H. , and Littlefair, G. , 2016, “ An Improved Static Model for Tool Deflection in Machining of Ti–6Al–4V Acetabular Shell Produced by Selective Laser Melting,” Measurement, 92, pp. 534–544.
Boschetti, F. , Pennati, G. , Gervaso, F. , Peretti, G. M. , and Dubini, G. , 2004, “ Biomechanical Properties of Human Articular Cartilage Under Compressive Loads,” Biorheology, 41, pp. 159–166.
Khorasani, A. M. , Gibson, I. , Goldberg, M. , and Littlefair, G. , 2016, “ A Survey on Mechanisms and Critical Parameters on Solidification of Selective Laser Melting During Fabrication of Ti-6Al-4V Prosthetic Acetabular Cup,” Mater. Design, 103, pp. 348–355.
Khorasani, A. M. , Gibson, I. , Goldberg, M. , and Littlefair, G. , 2017, “ Production of Ti-6Al-4V Acetabular Shell Using Selective Laser Melting: Possible Limitations in Fabrication,” Rapid Prototyping J, 23(1), pp. 110–121.
Thompson, M. , Northmore-Ball, M. , and Tanner, K. , 2002, “ Effects of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 216(4), pp. 237–245. [CrossRef]
Dalstra, M. , and Huiskes, R. , 1995, “ Load Transfer Across the Pelvic Bone,” J. Biomech., 28(6), pp. 715–724. [CrossRef] [PubMed]
Clarke, S. , Phillips, A. , and Bull, A. , 2013, “ Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum,” Comput. Methods Biomech. Biomed. Eng., 16(7), pp. 717–724. [CrossRef]
Mukherjee, K. , and Gupta, S. , 2016, “ The Effects of Musculoskeletal Loading Regimes on Numerical Evaluations of Acetabular Component,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 230(10), pp. 918–929. [CrossRef]
Dostal, W. F. , and Andrews, J. G. , 1981, “ A Three-Dimensional Biomechanical Model of Hip Musculature,” J. Biomech., 14(11), p. 803809. [CrossRef]
Kanis, J. A. , Borgstrom, F. , De Laet, C. , Johansson, H. , Johnell, O. , Jonsson, B. , Oden, A. , Zethraeus, N. , Pfleger, B. , and Khaltaev, N. , 2005, “ Assessment of Fracture Risk,” Osteoporosis Int., 16(6), pp. 581–589. [CrossRef]
Klotz, M. C. , Beckmann, N. A. , Bitsch, R. G. , Seebach, E. , Reiner, T. , and Jäger, S. , 2014, “ Bone Quality Assessment for Total Hip Arthroplasty With Intraoperative Trabecular Torque Measurements,” J. Orthop. Surg. Res., 9(1), p. 109. [CrossRef] [PubMed]
Russell‐Aulet, M. , Wang, J. , Thornton, J. , Colt, E. W. , and Pierson, R. N. , 1991, “ Bone Mineral Density and Mass by Total‐Body Dual‐Photon Absorptiometry in Normal White and Asian Men,” J. Bone Miner. Res., 6(10), pp. 1109–1113. [CrossRef] [PubMed]
John, J. G. S. , and Cameron, R. , 1999, Roderick M. Grant Physics of the Body, 2nd ed., Medical Physics Publishing, Madison, WI.

Figures

Grahic Jump Location
Fig. 1

The different acetabular shell designs: (a) convensional hemispherical, (b) finned, (c) spiked, and (d) combined. The dashed and the solid circles highlight a fin and a spike whose dimensions are shown in enlarged views. The models for virtually implanted hemipelvis: (e) The CAD models of the acetabular components and the implanted hemipelvis. The circle shows the region of interest, (f) the meshed FE model and (g) fixed boundary condition applied over the sacro-iliac joint and the pubic symphysis. (h) The surface where the joint loading was applied. The hatched area indicates the zone of force application.

Grahic Jump Location
Fig. 2

Division of the acetabular interface into four quadrants and the average values of von Mises stress in each quadrants with the use of two different liner materials and also the stress distribution of the corresponding quadrant in the natural bone over the eight phases of gait cycle (IC, initial contact; LR, loading response; MSt, mid stance; TSt, terminal stance; PSw, preswing; ISw, initial swing; MSw, midswing; TSw, terminal swing). Also comparison between the liner materials in terms of the von Mises stress profile at the interfacial bone. (a) Division of the acetabular interface into four quadrants: Q1, antero-medial iliac quadrant; Q2, postero-lateral iliac quadrant; Q3, ischial quadrant; Q4, pubic quadrant. (b) Stresses in the natural bone in each quadrant; (c) stresses in each quadrant while using HC-UHMWPE liner; (d) stresses in each quadrant while using HDPE–20%HA–20%Al2O3 liner; (e) comparison of the two liner materials in terms of the differences in von Mises stress between natural and implanted models (stress-difference) during the second and the seventh phases of gait cycle for all the four acetabular shell designs and considering normal bone condition and normal body weight; (f) von Mises stress distribution in acetabular peri-prosthetic bone while using the conventional shell design for the two liner materials and the natural bone, considering the second and the seventh phases of gait cycle; (g) von Mises stress distribution in acetabular peri-prosthetic bone while using the altered shell designs for the two liner materials and the natural bone, considering the second and the seventh phases of gait cycle.

Grahic Jump Location
Fig. 10

Stress-difference in Q4 all over the gait cycle with four shell designs in case of stronger bone condition (1.2 × ρ), the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates +ve stress-difference. Absence of (+) mark indicates –ve stress-difference.

Grahic Jump Location
Fig. 12

Average stress values in the bone around the spikes of the spiked and the combined shell designs and also the stress over the corresponding region in the natural hemipelvis for three body weights and stronger bone condition (1.2 × ρ) and for each of the three spikes. These stress values are considered for LR, ISw, and MSw phases of gait cycle. (a) body weight: 60 kg, (b) body weight: 70 kg, and (c) body weight: 90 kg.

Grahic Jump Location
Fig. 3

Differences in von Mises stress between natural and the implanted models (stress-difference) in Q1 throughout the gait cycle with all the four shell designs considering weaker bone condition (0.8 × ρ), the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates increment of von Mises stress due to implantation (i.e., +ve stress-difference). There is –ve stress-difference in the rest cases. The average stresses of Q1 of either the implanted or the natural bone has been considered.

Grahic Jump Location
Fig. 4

Stress-difference in Q2 with all the four shell designs in case of weaker bone condition, the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner, considering all the sub-phases of a gait cycle. (+) on the top of the bars indicates +ve stress-difference. There is –ve stress-difference in the other cases.

Grahic Jump Location
Fig. 5

Stress-difference in Q3 all over the gait cycle with four shell designs in case of weaker bone condition, the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates +ve stress-difference. Absence of (+) mark indicates –ve stress-difference.

Grahic Jump Location
Fig. 6

Stress-difference values in Q4 throughout the gait cycle with four shell designs for weaker bone condition, the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates +ve stress-difference. There is –ve stress-difference in the other cases.

Grahic Jump Location
Fig. 7

Stress-difference in Q1 all over the gait cycle with four shell designs in case of stronger bone condition (1.2 × ρ), the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates +ve stress-difference. Absence of (+) mark indicates –ve stress-difference.

Grahic Jump Location
Fig. 8

Stress-difference in Q2 throughout the phases of a gait cycle with four shell designs in case of stronger bone condition, the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner. (+) on the top of the bars indicates +ve stress-difference. Absence of (+) mark indicates –ve stress-difference.

Grahic Jump Location
Fig. 9

Stress-difference in Q3 with all the four shell designs in case of stronger bone condition, the two extremes of body weights: 60 kg and 90 kg and use of HC-UHMWPE liner, considering all the subphases of a gait cycle. (+) on the top of the bars indicates +ve stress-difference. There is –ve stress-difference in the other cases.

Grahic Jump Location
Fig. 11

Average stress in the bone around the spikes of the spiked and the combined shell designs and also the stress over the corresponding region in the natural hemi-pelvis for three body weights and weaker bone condition (0.8 × ρ) and for each of the three spikes. These stress values are considered for LR, ISw, and MSw phases of gait cycle (Ref Table 2 for the phases of the gait cycle). (a) body weight: 60 kg, (b) body weight: 70 kg, and (c) body weight: 90 kg.

Grahic Jump Location
Fig. 13

Average stress in the peri-spike bone and the stress over the corresponding region in the natural hemipelvis for three body weights and normal bone condition (ρ) and for each of the three spikes. These stress values are considered for LR, ISw, and MSw phases of gait cycle. (a) body weight: 60 kg, (b) body weight: 70 kg, and (c) body weight: 90 kg.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In