0
Research Papers

Predicting Rotation in Fenestrated Endovascular Aneurysm Repair Using Finite Element Analysis

[+] Author and Article Information
Ryan M. Sanford

Department of Mechanical and
Industrial Engineering,
University of Toronto,
Toronto, ON M5S 3G8, Canada

Sean A. Crawford

Division of Vascular Surgery,
Peter Munk Cardiac Centre,
University Health Network and
University of Toronto,
Toronto, ON M5G 2C4, Canada;
Institute of Biomaterials and
Biomedical Engineering,
University of Toronto,
Toronto, ON M5S 3G9, Canada

Helen Genis, Thomas L. Forbes

Division of Vascular Surgery,
Peter Munk Cardiac Centre,
University Health Network and
University of Toronto,
Toronto, ON M5G 2C4, Canada

Matthew G. Doyle

Department of Mechanical and
Industrial Engineering,
University of Toronto,
Toronto, ON M5S 3G8, Canada;
Division of Vascular Surgery,
Peter Munk Cardiac Centre,
University Health Network and
University of Toronto,
Toronto, ON M5G 2C4, Canada
e-mail: mg.doyle@utoronto.ca

Cristina H. Amon

Department of Mechanical and
Industrial Engineering,
University of Toronto,
Toronto, ON M5S 3G8, Canada;
Institute of Biomaterials and
Biomedical Engineering,
University of Toronto,
Toronto, ON M5S 3G9, Canada

1Corresponding author.

Manuscript received August 8, 2017; final manuscript received April 26, 2018; published online May 24, 2018. Assoc. Editor: Keefe B. Manning.

J Biomech Eng 140(9), 091004 (May 24, 2018) (8 pages) Paper No: BIO-17-1347; doi: 10.1115/1.4040124 History: Received August 08, 2017; Revised April 26, 2018

Fenestrated endovascular aneurysm repair (FEVAR) is a minimally invasive method of abdominal aortic aneurysm (AAA) repair utilized in patients with complex vessel anatomies. Stent grafts (SG) used in this process contain fenestrations within the device that need to be aligned with the visceral arteries upon successful SG deployment. Proper alignment is crucial to maintain blood flow to these arteries and avoid surgical complications. During fenestrated SG deployment, rotation of the SG can occur during the unsheathing process. This leads to misalignment of the vessels, and the fenestrations and is associated with poor clinical outcomes. The aim of this study was to develop a computational model of the FEVAR process to predict SG rotation. Six patient-specific cases are presented and compared with surgical case data. Realistic material properties, frictional effects, deployment methods, and boundary conditions are included in the model. A mean simulation error of 2 deg (range 1–4 deg) was observed. This model was then used to conduct a parameter study of frictional properties to see if rotation could be minimized. This study showed that increasing or decreasing the coefficients of friction (COF) between the sheath and the vessel walls would decrease the amount of rotation observed. Our model accurately predicts the amount of SG rotation observed during FEVAR and can be used as a preoperative planning tool within the surgical workflow.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nordon, I. M. , Hinchcliffe, R. J. , Loftus, I. M. , and Thompson, M. M. , 2011, “ Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms,” Nat. Rev. Cardiol., 8(2), pp. 92–102. [CrossRef] [PubMed]
Kuivanieme, H. , Platsoucas, C. D. , and Tilson, M. D. , 2008, “ Aortic Aneurysms: An Immune Disease With a Strong Genetic Component,” Circulation, 117(2), pp. 242–252. [CrossRef] [PubMed]
Crawford, S. A. , Sanford, R. M. , Doyle, M. G. , Amon, C. H. , and Forbes, T. L. , 2016, “ Understanding and Predicting Endovascular Device Rotation,” J. Vasc. Surg., 64(5), p. 1547. [PubMed]
Crawford, S. A. , Sanford, R. M. , Doyle, M. G. , Wheatcroft, M. , Amon, C. H. , and Forbes, T. L. , 2018, “ Prediction of Advanced Endovascular Stent Graft Rotation and Its Associated Morbidity and Mortality,” J. Vasc. Surg., in press.
Doyle, M. G. , Crawford, S. A. , Osman, E. , Eisenberg, N. , Tse, L. W. , Amon, C. H. , and Forbes, T. L. , 2018, “ Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation,” Vasc. Endovasc. Surg., 52(3), pp. 188–194. [CrossRef]
Zhao, S. , Gu, L. , and Froemming, S. R. , 2012, “ Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation,” ASME J. Biomech. Eng., 134(7), p. 071007. [CrossRef]
Shek, T. L. , Tse, L. W. , Nobovati, A. , and Amon, C. H. , 2012, “ Computational Fluid Dynamics Evaluation of the Cross-Limbed Stent Graft Configuration for Endovascular Aneurysm Repair,” ASME J. Biomech. Eng., 134(12), p. 121002. [CrossRef]
Li, Z. , and Kleinstreuer, C. , 2005, “ Fluid-Structure Interaction Effects on Sac-Blood Pressure and Wall Stress in a Stented Aneurysm,” ASME J. Biomech. Eng., 127(4), pp. 662–671. [CrossRef]
Xiang, J. , Damiano, R. J. , Lin, N. , Snyder, K. V. , Siddiqui, A. H. , Levy, E. I. , and Meng, H. , 2015, “ High-Fidelity Virtual Stenting: Modeling of Flow Diverter Deployment for Hemodynamic Characterization of Complex Intracranial Aneurysms,” J. Neurosurg., 123(4), pp. 832–840. [CrossRef] [PubMed]
Babiker, M. H. , Chong, B. , Gonzalez, L. F. , Cheema, S. , and Frakes, D. H. , 2013, “ Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics,” J. Biomech., 46(16), pp. 2809–2816. [CrossRef] [PubMed]
Roszelle, B. N. , Gonzalez, L. F. , Babiker, M. H. , Ryan, J. , Albuquerque, F. C. , and Frakes, D. H. , 2013, “ Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline,” Neuroradiology, 55(6), pp. 751–758. [CrossRef] [PubMed]
De Bock, S. , Iannaccone, F. , De Beule, M. , Van Loo, D. , Devos, D. , Vermassen, F. , Segers, P. , and Verhegghe, B. , 2012, “ Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study,” J. Mech. Behav. Biomed. Mater., 13, pp. 129–139. [CrossRef] [PubMed]
Demanget, N. , Duprey, A. , Badel, P. , Orgeas, L. , Avril, S. , Geindreau, C. , Albertini, J.-N. , and Favre, J. P. , 2013, “ Finite Element Analysis of the Mechanical Performances of 8 Marketed Aortic Stent-Grafts,” J. Endovasc. Ther., 20(4), pp. 523–535. [CrossRef] [PubMed]
Perrin, D. , Badel, P. , Orgeas, L. , Geindreau, C. , rolland du Roscoat, S. , Albertini, J.-N. , and Avril, S. , 2016, “ Patient-Specific Simulation of Endovascular Repair Surgery With Tortuous Aneurysms Requiring Flexible Stent-Grafts,” J. Mech. Behav. Biomed. Mater., 63, pp. 86–99. [CrossRef] [PubMed]
Desender, L. M. , Van Herzeele, I. , Lachat, M. L. , Rancic, Z. , Duchateau, J. , Rudarakanchana, N. , Bicknell, C. D. , Heyligers, J. M. M. , Teijink, J. A. W. , and Vermassen, F. E. , 2016, “ Patient Specific Rehearsal before EVAR: Influence on Technical and Nontechnical Operative Performance. A Randomized Controlled Trial,” Ann. Surg., 264(5), pp. 703–709. [CrossRef] [PubMed]
Perrin, D. , Badel, P. , Orgeas, L. , Geindreau, C. , Dumenil, A. , Albertini, J.-N. , and Avril, S. , 2015, “ Patient Specific Numerical Simulation of Stent-Graft Deployment: Validation on Three Clinical Cases,” J. Biomech., 48(10), pp. 1868–1875. [CrossRef] [PubMed]
Roy, D. , Holzapfel, G. , Kauffman, C. , and Soulez, G. , 2014, “ Finite Element Analysis of Abdominal Aortic Aneurysms: Geometrical and Structural Reconstruction With Application of an Anisotropic Material Model,” IMA J. Appl. Math., 79(5), pp. 1011–1026. [CrossRef]
LSTC, 2015, “ LS-DYNA Keyword User's Manual,” Livermore Software Technology Corporation, Livermore, CA.
Orobix, 2018, “ What is VMTK,” Orobix, Bergamo, Italy, accessed Mar. 17, 2017 http://www.vmtk.org/what-is-vmtk.html
Schulze-Bauer, C. A. , Morth, C. , and Holzapfel, G. A. , 2003, “ Passive Biaxial Mechanical Response of Aged Human Iliac Arteries,” ASME J. Biomech. Eng., 125(3), pp. 395–406. [CrossRef]
Sanford, R. M. , 2017, “ Computational Simulations of Fenestrated Endovascular Aneurysm Repair,” M.Sc. thesis, University of Toronto, Toronto, ON, Canada. https://tspace.library.utoronto.ca/handle/1807/79289
Cook Medical, 2012, “ Lunderquist; Extra-Stiff Wire Guide,” Cook Medical, Bloomington, IN, accessed Apr. 13, 2017, https://www.cookmedical.com/data/resources/AI-BM-LUNDS-EN-201202WEB.pdf
Cook Medical, 2016, “ Zenith Fenestrated Endovascular Graft; Annual Clinical Update,” Cook Medical, Bloomington, IN.
Roy, D. , Lerouge, S. , Inaekyan, K. , Kauffman, C. , Mongrain, R. , and Soulez, G. , 2016, “ Experimental Validation of More Realistic Computer Models for Stent-Graft Repair of Abdominal Aortic Aneurysms, Including Pre-Load Assessment,” Int. J. Numer. Method. Biomed. Eng., 32(12), p. e02769. [CrossRef]
Kamenskiy, A. V. , Dzenis, Y. A. , Jaffar Kazmi, S. A. , Pemberton, M. A. , Pipinos, I. I. , Phillips, N. Y. , Herber, K. , Woodford, T. , Bowen, R. E. , Lomneth, C. S. , and MacTaggart, J. N. , 2014, “ Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal, and Common Iliac Arteries,” Biomech. Model. Mechanobiol., 13(6), pp. 1341–1359. [CrossRef] [PubMed]
Roy, D. , Lerouge, S. , Kauffmann, C. , Mongrain, R. , and Soulez, G. , 2014, “ Simulation of a Complete Stent-Graft Deployment in a Patient-Specific Abdominal Aortic Aneurysm,” Seventh World Congress of Biomechanics, Boston, MA, July 6–11, p. 376. https://www.researchgate.net/profile/David_Roy11/publication/264167552_Simulation_of_a_complete_stent-graft_deployment_in_a_patient-specific_abdominal_aortic_aneurysm/links/53d0fd010cf2fd75bc5d5897/Simulation-of-a-complete-stent-graft-deployment-in-a-patient-specific-abdominal-aortic-aneurysm.pdf
Cook Medical, 2016, “ Physicians Pocket Reference Guide,” Cook Medical, Bloomington, IN.
Doyle, M. G. , Lancaster, M. , Tse, L. W. , Forbes, T. L. , and Amon, C. H. , 2016, “ Measurement of Aortic Stent Graft Coefficients of Friction,” Summer Biomechanics, Bioengineering and Biotransport Conference, National Harbor, MD, June 29–July 2.
Vad, S. , Eskinazi, A. , Corbett, T. , McLoughlin, T. , and Vande Geest, J. P. , 2010, “ Determination of Coefficient of Friction for Self-Expanding Stent-Grafts,” ASME J. Biomech. Eng., 132(12), p. 121007. [CrossRef]
Sturla, F. , Ronzoni, M. , Vitali, M. , Dimasi, A. , Vismara, R. , Preston Maher, G. , Burriesci, G. , Votta, E. , and Redaelli, A. , 2016, “ Impact of Different Aortic Valve Calcification Patterns on the Outcome of Transcatheter Aortic Valve Implantation: A Finite Element Study,” J. Biomech., 49(12), pp. 2520–2530. [CrossRef] [PubMed]
Crawford, S. A. , Doyle, M. G. , Tse, L. W. , and Roche-Nagle, G. , 2016, “ In-Stock' Fenestrated Stent Graft for the Urgent Repair of an Abdominal Aortic Aneurysm,” BMJ Case Rep.
Cronenwett, J. , Murphy, T. , Zelenock, G. , Whitehouse, W. J. , Lindenauer, S. , Graham, L. , Quint, L. , Silver, T. , and Stanley, J. , 1985, “ Actuarial Analysis of Variables Associated With Rupture of Small Abdominal Aortic Aneurysms,” Surgery, 98(3), pp. 472–483. http://europepmc.org/abstract/med/3898453 [PubMed]
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “ A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast., 61(1–3), pp. 1–48. [CrossRef]
Vande Geest, J. P. , Sacks, M. S. , and Vorp, D. A. , 2006, “ The Effects of Aneurysm on the Biaxial Mechanical Behaviour of Human Abdominal Aorta,” J. Biomech., 39(7), pp. 1324–1334. [CrossRef] [PubMed]
Speelman, L. , Bohra, A. , Bosboom, E. M. H. , Schurink, G. W. H. , van de Vosse, F. N. , Makaroun, M. S. , and Vorp, D. A. , 2007, “ Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms,” ASME J. Biomech. Eng., 129(1), pp. 105–109. [CrossRef]
Maier, A. , Gee, M. , Reeps, C. , Eckstein, H.-H. , and Wall, W. , 2010, “ Impact of Calcifications on Patient-Specific Wall Stress Analysis of Abdominal Aortic Aneurysms,” Biomech. Model. Mechanobiol., 9(5), pp. 511–521. [CrossRef] [PubMed]
Vande Geest, J. P. , Sacks, M. S. , and Vorp, D. A. , 2006, “ A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysm,” J. Biomech., 39(13), pp. 2347–2354. [CrossRef] [PubMed]
Wang, D. H. , Makaroun, M. , Webster, M. W. , and Vorp, D. A. , 2001, “ Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm,” ASME J. Biomech. Eng., 123(6), pp. 536–539. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Stent graft (a) and sheath (b) meshes

Grahic Jump Location
Fig. 1

Complete simulation geometry

Grahic Jump Location
Fig. 3

Crimping process: (a) prior to crimping and (b) postcrimping

Grahic Jump Location
Fig. 4

Deployment procedure: (a) sheath advancing through the iliac artery and (b) deployed SG after the sheath has been retracted

Grahic Jump Location
Fig. 5

((a)–(f)) Simulation results for stent graft rotation for patients 1–6, respectively

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In