Research Papers

Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture

[+] Author and Article Information
Dan T. Zaharie

The Royal British Legion Centre for
Blast Injury Studies,
Imperial College London,
London SW7 2AZ, UK;
Structural Biomechanics,
Department of Civil and
Environmental Engineering,
Imperial College London,
Skempton Building, South Kensington Campus,
London SW7 2AZ, UK
e-mail: dan.zaharie10@imperial.ac.uk

Andrew T. M. Phillips

The Royal British Legion Centre for
Blast Injury Studies,
Imperial College London,
London SW7 2AZ, UK;
Structural Biomechanics,
Department of Civil and
Environmental Engineering,
Imperial College London,
Skempton Building, South Kensington Campus,
London SW7 2AZ, UK
e-mail: andrew.phillips@imperial.ac.uk

1Corresponding author.

Manuscript received December 5, 2016; final manuscript received November 10, 2017; published online May 24, 2018. Assoc. Editor: Steven D. Abramowitch.

J Biomech Eng 140(9), 091001 (May 24, 2018) (11 pages) Paper No: BIO-16-1497; doi: 10.1115/1.4039894 History: Received December 05, 2016; Revised November 10, 2017

The pelvic construct is an important part of the body as it facilitates the transfer of upper body weight to the lower limbs and protects a number of organs and vessels in the lower abdomen. In addition, the importance of the pelvis is highlighted by the high mortality rates associated with pelvic trauma. This study presents a mesoscale structural model of the pelvic construct and the joints and ligaments associated with it. Shell elements were used to model cortical bone, while truss elements were used to model trabecular bone and the ligaments and joints. The finite element (FE) model was subjected to an iterative optimization process based on a strain-driven bone adaptation algorithm. The bone model was adapted to a number of common daily living activities (walking, stair ascent, stair descent, sit-to-stand, and stand-to-sit) by applying onto it joint and muscle loads derived using a musculoskeletal modeling framework. The cortical thickness distribution and the trabecular architecture of the adapted model were compared qualitatively with computed tomography (CT) scans and models developed in previous studies, showing good agreement. The sensitivity of the model to changes in material properties of the ligaments and joint cartilage and changes in parameters related to the adaptation algorithm was assessed. Changes to the target strain had the largest effect on predicted total bone volumes. The model showed low sensitivity to changes in all other parameters. The minimum and maximum principal strains predicted by the structural model compared to a continuum CT-derived model in response to a common test loading scenario showed good agreement with correlation coefficients of 0.813 and 0.809, respectively. The developed structural model enables a number of applications such as fracture modeling, design, and additive manufacturing of frangible surrogates.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Michaeli, D. A. , Murphy, S. B. , and Hipp, J. A. , 1997, “ Comparison of Predicted and Measured Contact Pressures in Normal and Dysplastic Hips,” Med. Eng. Phys., 19(2), pp. 180–186. [CrossRef] [PubMed]
van den Bogert, A. J. , Read, L. , and Nigg, B. M. , 1999, “ An Analysis of Hip Joint Loading During Walking, Running, and Skiing,” Med. Sci. Sports Exercise, 31(1), pp. 131–142. [CrossRef]
Bergmann, G. , Deuretzabacher, G. , Heller, M. , Graichen, F. , Rohlmann, A. , Strauss, J. , and Duda, G. N. , 2001, “ Hip Forces and Gait Patterns From Rountine Activities,” J. Biomech., 34(7), pp. 859–871. [CrossRef] [PubMed]
Culmann, K. , 1866, Die Graphische Statik, Mayer and Zeller, Zurich, Switzerland.
Meyer, G. H. , 1867, “ Die Architektur Der Spongiosa, Archief Fur Den Anatomischen Und Physiologischen,” Wiss. Med., 27(4), pp. 1389–1394.
Koch, J. C. , 1917, “ The Laws of Bone Architecture,” Am. J. Anat., 21(2), pp. 177–298. [CrossRef]
Wolff, J. , 1869, “ Über Die Bedeutung Der Architektur Der Spongiösen Substanz,” Zentralbl. Med. Wiss., 6, pp. 223–234.
Frost, H. M. , 2003, “ Bone's Mechanostat: A 2003 Update,” Anat. Rec. Part A, 275(2), pp. 1081–1101. [CrossRef]
Stephenson, P. , and Seedhom, B. B. , 1999, “ Cross-Sectional Geometry of the Human Femur in the Mid-Third Region,” Proc. Inst. Mech. Eng. H, 213(2), pp. 159–166. [CrossRef] [PubMed]
Treece, G. M. , Gee, A. H. , Mayhew, P. M. , and Poole, K. E. S. , 2010, “ High Resolution Cortical Bone Thickness Measurement From Clinical CT Data,” Med. Image Anal., 14(3), pp. 276–290. [CrossRef] [PubMed]
Phillips, A. T. M. , Villette, C. C. , and Modenese, L. , 2015, “ Femoral Bone Mesoscale Structural Architecture Prediction Using Musculoskeletal and Finite Element Modelling,” Int. Biomech., 2(1), pp. 43–61. [CrossRef]
Jacob, H. A. C. , Huggler, A. H. , Dietschi, C. , and Schreiber, A. , 1976, “ Mechanical Function of Subchondral Bone as Experimentally Determined on the Acetabulum of the Human Pelvis,” J. Biomech., 9(10), pp. 625–626. [CrossRef] [PubMed]
Dalstra, M. , Huiskes, R. , Odgaard, A. , and van Erning, L. , 1993, “ Mechanical and Textural Properties of Pelvic Trabecular Bone,” J. Biomech., 26(4–5), pp. 523–535. [CrossRef] [PubMed]
Anderson, A. E. , Peters, C. L. , Tuttle, B. D. , and Weiss, J. A. , 2005, “ Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies,” ASME J. Biomech. Eng., 127(3), pp. 364–373. [CrossRef]
Vasu, R. , Carter, D. R. , and Harris, W. H. , 1982, “ Stress Distributions in the Acetabular Region—Part I: Before and After Total Joint Replacement,” J. Biomech., 15(3), pp. 155–157. [CrossRef] [PubMed]
Carter, D. R. , Vasu, R. , and Harris, W. H. , 1982, “ Stress Distributions in the Acetabular Region—Part II: Effects of Cement Thickness and Metal Backing of the Total Hip Acetabular Component,” J. Biomech., 15(3), pp. 165–170. [CrossRef] [PubMed]
Pedersen, D. R. , Crowninshield, R. D. , Brand, R. A. , and Johnston, R. C. , 1982, “ An Axisymmetric Model of Acetabular Components in Total Hip Arthroplasty,” J. Biomech., 15(4), pp. 305–315. [CrossRef] [PubMed]
Huiskes, R. , 1987, “ Finite Element Analysis of Acetabular Reconstruction. Noncemented Threaded Cups,” Acta Orthop. Scand., 58(6), pp. 620–625. [CrossRef] [PubMed]
Goel, V. K. , Valliappan, S. , and Svensson, N. L. , 1978, “ Stresses in the Normal Pelvis,” Comput. Biol. Med., 8(2), pp. 91–104. [CrossRef] [PubMed]
Oonishi, H. , Isha, H. , and Hasegawa, T. , 1983, “ Mechanical Analysis of the Human Pelvis and Its Application to the Artificial Hip Joint—by Means of the Three Dimensional Finite Element Method,” J. Biomech., 16(6), pp. 427–44. [CrossRef] [PubMed]
Schuller, H. , Dalstra, M. , Huiskes, R. , and Marti, R. , 1993, “ Total Hip Reconstruction in Acetabular Dysplasia. A Finite Element Study,” J. Bone Jt. Surg. Br., 75B(3), pp. 468–474. [CrossRef]
Dalstra, M. , Huiskes, R. , and van Erning, L. , 1995, “ Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone,” ASME J. Biomech. Eng., 117(3), pp. 272–278. [CrossRef]
Thompson, M. S. , Northmore-Ball, M. D. , and Tanner, K. E. , 2002, “ Effects of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis,” Proc. Inst. Mech. Eng. H, 216(4), pp. 237–245. [CrossRef] [PubMed]
Zant, N. P. , Heaton-Adegbile, P. , Hussell, J. G. , and Tong, J. , 2008, “ In Vitro Fatigue Failure of Cemented Acetabular Replacements: A Hip Simulator Study,” ASME J. Biomech. Eng., 130(2), p. 021019. [CrossRef]
Cilingir, A. C. , Ucar, V. , and Kazan, R. , 2007, “ Three-Dimensional Anatomic Finite Element Modelling of Hemi-Arthroplasty of Human Hip Joint,” Trends Biomater. Artif. Organs, 21(1), pp. 63–72. https://www.researchgate.net/publication/267421019_Three-Dimensional_Anatomic_Finite_Element_Modelling_of_Hemi-Arthroplasty_of_Human_Hip_Joint_Three-Dimensional_Anatomic_Finite_Element_Modelling_of_Hemi-Arthroplasty_of_Human_Hip_Joint
Phillips, A. T. M. , Pankaj, P. , Usmani, A. S. , and Howie, C. R. , 2004, “ Numerical Modelling of the Acetabular Construct Following Impaction Grafting,” Computer Methods in Biomechanics and Biomedical Engineering, Madrid, Spain. https://www.researchgate.net/publication/265657065_NUMERICAL_MODELLING_OF_THE_ACETABULAR_CONSTRUCT_FOLLOWING_IMPACTION_GRAFTING
Phillips, A. T. M. , Pankaj, P. , Howie, C. R. , Usmani, A. S. , and Simpson, A. H. R. W. , 2006, “ 3D Non-Linear Analysis of the Acetabular Construct Following Impaction Grafting,” Comput. Methods Biomech. Biomed. Eng., 9(3), pp. 125–33. [CrossRef]
Ghosh, R. , Pal, B. , Ghosh, D. , and Gupta, S. , 2013, “ Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain,” Comput. Methods Biomech. Biomed. Eng., 18(7), pp. 697–710.
Vrahas, M. , Hern, T. C. , Diangelo, D. , Kellam, J. , and Tile, M. , 1995, “ Ligamentous Contributions to Pelvic Stability,” Orthopedics, 18(3), pp. 271–274. https://www.healio.com/orthopedics/journals/ortho/1995-3-18-3/%7B0391afc1-50ed-4cfd-9b94-f44cf1450117%7D/ligamentous-contributions-to-pelvic-stability [PubMed]
Phillips, A. , Pankaj, P. , Howie, C. , Usmani, A. , and Simpson, A. , 2007, “ Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions,” Med. Eng. Phys., 29(7), pp. 739–748. [CrossRef] [PubMed]
Dawson, J. M. , Khmelniker, B. V. , and McAndrew, M. P. , 1999, “ Analysis of the Structural Behavior of the Pelvis During Lateral Impact Using the Finite Element Method,” Accid. Anal. Prev., 31(1–2), pp. 109–119. [CrossRef] [PubMed]
Majumder, S. , Roychowdhury, A. , and Pal, S. , 2004, “ Dynamic Response of the Pelvis Under Side Impact Load—A Three-Dimensional Finite Element Approach,” Int. J. Crashworthiness, 9(1), pp. 89–103. [CrossRef]
Majumder, S. , Roychowdhury, A. , and Pal, S. , 2007, “ Simulation of Hip Fracture in Sideways Fall Using a 3D Finite Element Model of Pelvis-Femur-Soft Tissue Complex With Simplified Representation of Whole Body,” Med. Eng. Phys., 29(10), pp. 1167–1178. [CrossRef] [PubMed]
Li, Z. , Kim, J.-E. , Davidson, J. S. , Etheridge, B. S. , Alonso, J. E. , and Eberhardt, A. W. , 2007, “ Biomechanical Response of the Pubic Symphysis in Lateral Pelvic Impacts: A Finite Element Study,” J. Biomech., 40(12), pp. 2758–2766. [CrossRef] [PubMed]
van Lenthe, G. H. , Stauber, M. , and Müller, R. , 2006, “ Specimen-Specific Beam Models for Fast and Accurate Prediction of Human Trabecular Bone Mechanical Properties,” Bone, 39(6), pp. 1182–1189. [CrossRef] [PubMed]
Phillips, A. T. M. , 2012, “ Structural Optimisation: Biomechanics of the Femur,” Proc. ICE Eng. Comput. Mech., 165(2), pp. 147–154.
Modenese, L. , Phillips, A. T. M. , and Bull, A. M. J. , 2011, “ An Open Source Lower Limb Model: Hip Joint Validation,” J. Biomech., 44(12), pp. 2185–2193. [CrossRef] [PubMed]
Modenese, L. , and Phillips, A. T. M. , 2012, “ Prediction of Hip Contact Forces and Muscle Activations During Walking at Different Speeds,” Multibody Syst. Dyn., 28(1–2), pp. 157–168. [CrossRef]
Modenese, L. , Gopalakrishnan, A. , and Phillips, A. , 2013, “ Application of a Falsification Strategy to a Musculoskeletal Model of the Lower Limb and Accuracy of the Predicted Hip Contact Force Vector,” J. Biomech., 46(6), pp. 1193–1200. [CrossRef] [PubMed]
Morlock, M. , Schneider, E. , Bluhm, A. , Vollmer, M. , Bergmann, G. , Müller, V. , and Honl, M. , 2001, “ Duration and Frequency of Every Day Activities in Total Hip Patients,” J. Biomech., 34(7), pp. 873–881. [CrossRef] [PubMed]
Horsman, M. D. K. , Koopman, H. , der Helm, F. C. T. , Prosé, L. P. , and Veeger, H. E. J. , 2007, “ Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity,” Clin. Biomech., 22(2), pp. 239–247. [CrossRef]
Delp, S. , Anderson, F. , Arnold, A. , Loan, P. , Habib, A. , John, C. , Guendelman, E. , and Thelen, D. , 2007, “ OpenSim: Open Source to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Wu, G. , Siegler, S. , Allard, P. , Kirtley, C. , Leardini, A. , Rosenbaum, D. , Whittle, M. , D'Lima, D. D. , Cristofolini, L. , Witte, H. , Schmid, O. , and Stokes, I. , 2002, “ ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine,” J. Biomech., 35(4), pp. 543–548. [CrossRef] [PubMed]
Barre, A. , and Armand, S. , 2014, “ Biomechanical ToolKit: Open-Source Framework to Visualize and Process Biomechanical Data,” Comput. Methods Programs Biomed., 114(1), pp. 80–87. [CrossRef] [PubMed]
Dumas, R. , Chèze, L. , and Verriest, J. P. , 2007, “ Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters,” J. Biomech., 40(3), pp. 543–553. [CrossRef] [PubMed]
Lu, T. W. , and O'Connor, J. J. , 1999, “ Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints,” J. Biomech., 32(2), pp. 129–134. [CrossRef] [PubMed]
Steele, K. M. , DeMers, M. S. , Schwartz, M. H. , and Delp, S. L. , 2012, “ Compressive Tibiofemoral Force During Crouch Gait,” Gait Posture, 35(4), pp. 556–560. [CrossRef] [PubMed]
van Arkel, R. J. , Modenese, L. , Phillips, A. T. , and Jeffers, J. R. , 2013, “ Hip Abduction Can Prevent Posterior Edge Loading of Hip Replacements,” J. Orthop. Res., 31(8), pp. 1172–1179. [CrossRef] [PubMed]
Villette, C. C. , 2016, “ Structural Meso and Microscale Finite Element Based Approaches for the Prediction of Bone Architecture and Fracture,” Ph.D. thesis, Imperial College London, London.
Turner, C. H. , Rho, J. , Takano, Y. , Tsui, T. Y. , and Pharr, G. M. , 1999, “ The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results From Two Microscopic Measurement Techniques,” J. Biomech., 32(4), pp. 437–441. [CrossRef] [PubMed]
Hammer, N. , Steinke, H. , Slowik, V. , Josten, C. , Stadler, J. , Böhme, J. , and Spanel-Borowski, K. , 2009, “ The Sacrotuberous and the Sacrospinous Ligament—A Virtual Reconstruction,” Ann. Anat., 191(4), pp. 417–425. [CrossRef] [PubMed]
Hammer, N. , Steinke, H. , Böhme, J. , Stadler, J. , Josten, C. , and Spanel-Borowski, K. , 2010, “ Description of the Iliolumbar Ligament for Computer-Assisted Reconstruction,” Ann. Anat., 192(3), pp. 162–167. [CrossRef] [PubMed]
Moore, K. L. , Agur, A. M. R. , and Dalley, A. F. , 2015, Essential Clinical Anatomy, Lippincott Williams and Wilkins, Philadelphia, PA.
Suh, J. K. , and Bai, S. , 1998, “ Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage,” ASME J. Biomech. Eng., 120(2), pp. 195–201. [CrossRef]
Almeida, E. S. , and Spilker, R. L. , 1998, “ Finite Element Formulations for Hyperelastic Transversely Isotropic Biphasic Soft Tissues,” Comput. Methods Appl. Mech. Eng., 151(3–4), pp. 513–538. [CrossRef]
Ehlers, W. , and Markert, B. , 2001, “ A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media,” ASME J. Biomech. Eng., 123(5), pp. 418–424. [CrossRef]
Li, Z. , Alonso, J. E. , Kim, J.-E. , Davidson, J. S. , Etheridge, B. S. , and Eberhardt, A. W. , 2006, “ Three-Dimensional Finite Element Models of the Human Pubic Symphysis With Viscohyperelastic Soft Tissues,” Ann. Biomed. Eng., 34(9), pp. 1452–1462. [CrossRef] [PubMed]
Leung, A. S. O. , Gordon, L. M. , Skrinskas, T. , Szwedowski, T. , and Whyne, C. M. , 2009, “ Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model,” Proc. Inst. Mech. Eng. H, 223(8), pp. 965–979. [CrossRef] [PubMed]
Aamodt, A. , Lund-Larsen, J. , Eine, J. , Andersen, E. , Benum, P. , and Husby, O. S. , 1997, “ In Vivo Measurements Show Tensile Axial Strain in the Proximal Lateral Aspect of the Human Femur,” J. Orthop. Res., 15(6), pp. 927–931. [CrossRef] [PubMed]
Zhang, Q. H. , Wang, J. Y. , Lupton, C. , Heaton-Adegbile, P. , Guo, Z. X. , Liu, Q. , and Tong, J. , 2010, “ A Subject-Specific Pelvic Bone Model and Its Application to Cemented Acetabular Replacements,” J. Biomech., 43(14), pp. 2722–2727. [CrossRef] [PubMed]
Prevrhal, S. , Engelke, K. , and Kalender, W. A. , 1999, “ Accuracy Limits for the Determination of Cortical Width and Density: The Influence of Object Size and CT Imaging Parameters,” Phys. Med. Biol., 44(3), pp. 751–764. [CrossRef] [PubMed]
Nägele, E. , Kuhn, V. , Vogt, H. , Link, T. M. , Müller, R. , Lochmüller, E.-M. , and Eckstein, F. , 2004, “ Technical Considerations for Microstructural Analysis of Human Trabecular Bone From Specimens Excised From Various Skeletal Sites,” Calcif. Tissue Int., 75(1), pp. 15–22. [CrossRef] [PubMed]
Dalstra, M. , Huiskes, R. , and Section, B. , 1995, “ Load Transfer Across the Pelvic,” J. Biomech., 28(6), pp. 715–724. [CrossRef] [PubMed]
Macchiarelli, R. , Bondioli, L. , Galichon, V. , and Tobias, P. V. , 1999, “ Hip Bone Trabecular Architecture Shows Uniquely Distinctive Locomotor Behaviour in South African Australopithecines,” J. Hum. Evol., 36(2), pp. 211–232. [CrossRef] [PubMed]
Peretz, A. M. , Hipp, J. A. , and Heggeness, M. H. , 1998, “ The Internal Bony Architecture of the Sacrum,” Spine, 23(9), pp. 971–974. [CrossRef] [PubMed]
Mahato, N. K. , 2010, “ Trabecular Architecture in Human Sacra: Patterns Observed in Complete Sacralisation and Accessory Articulation With the Fifth Lumbar Vertebrae,” J. Morphol. Sci., 27(1), pp. 19–22. http://jms.org.br/PDF/v27n1a06.pdf
Bland, J. M. , and Altman, D. G. , 1999, “ Measuring Agreement in Method Comparison Studies,” Stat. Methods Med. Res., 8(2), pp. 135–160. [CrossRef] [PubMed]
Boyle, C. , and Kim, I. Y. , 2011, “ Three-Dimensional Micro-Level Computational Study of Wolff's Law Via Trabecular Bone Remodeling in the Human Proximal Femur Using Design Space Topology Optimization,” J. Biomech., 44(5), pp. 935–942. [CrossRef] [PubMed]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Static and Dynamic Optimization Solutions for Gait are Practically Equivalent,” J. Biomech., 34(2), pp. 153–161. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Lower limb musculoskeletal model in (a) standing and (b) seated positions

Grahic Jump Location
Fig. 2

Transverse 2.5 mm slice of the pelvic for the base FE model. Shell elements representing cortical bone are shown in gray in the border areas; truss elements representing trabecular bone are shown in the interior in red (see color figure online).

Grahic Jump Location
Fig. 3

Pelvis model with ligaments included: Sacroiliac ligaments in blue (center top), pubic ligament in red (center bottom), sacrospinous ligaments in yellow (middle), sacrotuberous ligaments in purple (outer edge of sacrospinous ligaments) and inguinal ligaments in green (diagonal front) (see color figure online)

Grahic Jump Location
Fig. 7

Contours of position-dependent cortical thickness ranging from 0.1 mm to 5 mm are shown in the top row: (a) frontal view of pelvis, (b) anterior and (c) medial views of the right innominate. Trabecular elements' radii distribution ranging from 0.1 mm to 2 mm is shown in the bottom row: (d) frontal view, (e) anterior, and (f) medial views of the right innominate. Trabecular elements with a radius < 0.1 mm were excluded for clarity.

Grahic Jump Location
Fig. 4

(a) Load applicator at the hip and (b) fixator at the top of the sacrum. The elements representing the bone are shown in light gray, with the two layers of soft elements (from left to right in (a) and top to bottom in (b)) in red and the two layers of stiffer elements in blue (dark blue represents the stiffest layer of elements in the hip applicator). In addition, the black arrow illustrates the peak load applied on the hip joint during walking (see color figure online)

Grahic Jump Location
Fig. 5

Hip JCFs derived from musculoskeletal model for cycles of (a) walking, (b) stair ascent, (c) stair descent, and (d) sit-to-stand and stand-to-sit are shown in green lines for the right leg and blue lines for the left leg. The frames selected for each activity to be used in the FE simulations are highlighted using solid circles. Hip JCFs recorded and reported by Bergmann et al. [3] for the right leg are shown in dashed lines for each activity (see color figure online)

Grahic Jump Location
Fig. 6

Modeling framework

Grahic Jump Location
Fig. 8

Selected 5 mm slices of the converged pelvic model illustrating the trabecular structure and cortical thickness. Truss elements with a radius >0.1 mm are shown in red (largest clusters), with elements with a radius of 0.1 mm shown in blue. Elements with a radius of 1 μm are not shown for clarity.

Grahic Jump Location
Fig. 9

Trabecular trajectories formed in the ilium adapted from (a) walking and (b) all activities. The trajectories highlighted correspond to regions in the ilium with a higher trabecular density caused by walking observed by Machiarelli et al. [64]: superior bundle (sb), anterior bundle (ab), sacropubic bundle (spb), iliocotyloid bundle (icb), ilioischial bundle (iib), and trabecular chiasma (tc). Truss elements with a radius >0.1 mm are shown in red (clusters with thick elements). Truss elements with a radius of 0.1 mm appear in blue (see color figure online).

Grahic Jump Location
Fig. 10

Figure illustrating transverse slices from the CT scans (a, c, e, g) shown along with corresponding slices of the pelvic model (b, d, f, h) generated using an in-house code developed in matlab. Shell elements and truss elements with a radius > 0.1 mm are shown in light gray. Truss elements with a radius of 0.1 mm appear in dark gray. Elements with a radius of 1 μm are not shown for clarity.

Grahic Jump Location
Fig. 11

Influence of activities on cortical (a, b, c) and trabecular (d, e, f) structure of converged pelvic model. The elements are color mapped based on the activity which has been most influential in determining their thickness. Further information on the influence of activities on the cortical and trabecular architecture can be found in the supplemental Fig. S1 which is available under the “Supplemental Data” tab for this paper on the ASME digital collection.

Grahic Jump Location
Fig. 12

Comparison between the minimum (a) and the maximum (b) principal strains across the surface of the structural model (x axis) and CT-derived model (y axis). Lines of best fit are shown in solid lines for each case and do not differ greatly from the y = x line shown in dash line.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In