0
Research Papers

Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry

[+] Author and Article Information
Grant W. Rowlands, Bryan C. Good, Steven Deutsch

Department of Biomedical Engineering,
The Pennsylvania State University,
205 Hallowell Building,
University Park, PA 16802

Keefe B. Manning

Professor
Department of Biomedical Engineering,
The Pennsylvania State University,
205 Hallowell Building,
University Park, PA 16802;
Department of Surgery,
Penn State Hershey Medical Center,
Hershey, PA 17033
e-mail: kbm10@psu.edu

1Corresponding author.

Manuscript received July 25, 2017; final manuscript received March 25, 2018; published online April 30, 2018. Assoc. Editor: C. Alberto Figueroa.

J Biomech Eng 140(7), 071008 (Apr 30, 2018) (13 pages) Paper No: BIO-17-1326; doi: 10.1115/1.4039822 History: Received July 25, 2017; Revised March 25, 2018

Ventricular assist devices (VADs) are implanted in patients with a diseased ventricle to maintain peripheral perfusion as a bridge-to-transplant or as destination therapy. However, some patients with continuous flow VADs (e.g., HeartMate II (HMII)) have experienced gastrointestinal (GI) bleeding, in part caused by the proteolytic cleavage or mechanical destruction of von Willebrand factor (vWF), a clotting glycoprotein. in vitro studies were performed to measure the flow located within the HMII outlet cannula under both steady and physiological conditions using particle image velocimetry (PIV). Under steady flow, a mock flow loop was used with the HMII producing a flow rate of 3.2 L/min. The physiological experiment included a pulsatile pump operated at 105 BPM with a ventricle filling volume of 50 mL and in conjunction with the HMII producing a total flow rate of 5.0 L/min. Velocity fields, Reynolds normal stresses (RNSs), and Reynolds shear stresses (RSSs) were analyzed to quantify the outlet flow's potential contribution to vWF degradation. Under both flow conditions, the HMII generated principal Reynolds stresses that are, at times, orders of magnitude higher than those needed to unfurl vWF, potentially impacting its physiological function. Under steady flow, principal RNSs were calculated to be approximately 500 Pa in the outlet cannula. Elevated Reynolds stresses were observed throughout every phase of the cardiac cycle under physiological flow with principal RNSs approaching 1500 Pa during peak systole. Prolonged exposure to these conditions may lead to acquired von Willebrand syndrome (AvWS), which is accompanied by uncontrollable bleeding episodes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mozaffarian, D. , Benjamin, E. , Go, A. , Arnet, D. , Blaha, M. , Cushman, M. , de Ferranti, S. , Després, J.-P. , Fullerton, H. , Howard, V. , Huffman, M. , Judd, S. , Kissela, B. , Lackland, D. , Lichtma, J. , Lisabeth, L. , Liu, S. , Mackey, R. , Matchar, D. , McGuire, D. , Mohler, E. , Moy, C. , Muntner, P. , Mussolino, M. , Nasir, K. , Neumar, R. , Nichol, G. , Palaniappan, L. , Pandey, D. , Reeves, M. , Rodriguez, C. , Sorlie, P. , Stein, J. , Towfighi, A. , Turan, T. , Virani, S. , Willey, J. , Woo, D. , Yeh, R. , and Turner, M. , 2015, “ Heart Disease and Stroke Statistics—At-a-Glance,” Am. Heart Assoc., 1(1), pp. 7–10.
Colvin, M. , Smith, J. M. , Skeans, M. A. , Edwards, L. B. , Uccellini, K. , Snyder, J. J. , Israni, A. K. , and Kasiske, B. L. , 2017, “ OPTN/SRTR 2015 Annual Data Report: Heart,” Am. J. Transplant., 17(Suppl. 1), pp. 1–71. [CrossRef]
Frazier, O. H. , and Parnis, S. M. , 2014, “ Ventricular Assist Devices,” Organ Transplantation, A. D. Kirk , S. J. Knechtle , C. P. Larsen , J. C. Madsen , T. C. Pearson , and S. A. Webber , eds., Wiley, New York, pp. 145–151. [CrossRef]
De Biasi, A. R. , Manning, K. B. , and Salemi, A. , 2015, “ Science for Surgeons: Understanding Pump Thrombogenesis in Continuous-Flow Left Ventricular Assist Devices,” J. Thorac. Cardiovasc. Surg., 149(3), pp. 667–673. [CrossRef] [PubMed]
Meyer, A. L. , Malehsa, D. , Budde, U. , Bara, C. , Haverich, A. , and Strueber, M. , 2014, “ Acquired von Willebrand Syndrome in Patients With a Centrifugal or Axial Continuous Flow Left Ventricular Assist Device,” JACC Heart Failure, 2(2), pp. 141–145. [CrossRef] [PubMed]
Chen, Z. , Mondal, N. K. , Ding, J. , Koenig, S. C. , Slaughter, M. S. , and Wu, Z. J. , 2016, “ Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor,” Artif. Organs, 40(7), pp. 659–668. [CrossRef] [PubMed]
Vergauwe, R. M. A. , Uji-I, H. , De Ceunynck, K. , Vermant, J. , Vanhoorelbeke, K. , and Hofkens, J. , 2014, “ Shear Stress-Induced Conformational Changes of von Willebrand Factor in a Water Glycerol Mixture Observed With Single Molecule Microscopy,” J. Phys. Chem. B, 118(21), pp. 5660–5669. [CrossRef] [PubMed]
Reininger, A. J. , 2015, “ The Function of Ultra-Large von Willebrand Factor Multimers in High Shear Flow Controlled by ADAMTS13,” Hamostaseologie, 35(3), pp. 225–233. [CrossRef] [PubMed]
Chan, C. H. H. , Pieper, I. L. , Fleming, S. , Friedmann, Y. , Foster, G. , Hawkins, K. , Thornton, C. A. , and Kanamarlapudi, V. , 2014, “ The Effect of Shear Stress on the Size, Structure, and Function of Human von Willebrand Factor,” Artif. Organs, 38(9), pp. 741–750. [CrossRef] [PubMed]
Gogia, S. , and Neelamegham, S. , 2015, “ Role of Fluid Shear Stress in Regulating VWF Structure, Function and Related Blood Disorders,” Biorheology, 52, pp. 319–335. [CrossRef] [PubMed]
Chiu, W.-C. , Slepian, M. J. , and Bluestein, D. , 2014, “ Thrombus Formation Patterns in the HeartMate II VAD-Clinical Observations Can Be Predicted by Numerical Simulations,” ASAIO J., 60(2), pp. 237–240. [CrossRef] [PubMed]
Nascimbene, A. , Neelamegham, S. , Frazier, O. H. , Moake, J. L. , and Dong, J. F. , 2016, “ Acquired von Willebrand Syndrome Associated With Left Ventricular Assist Device,” Blood, 127(25), pp. 3133–3141. [CrossRef] [PubMed]
Tiede, A. , Rand, J. H. , Budde, U. , Ganser, A. , and Federici, A. B. , 2011, “ How I Treat the Acquired von Willebrand Syndrome,” Blood, 117(25), pp. 29–31. [CrossRef]
Tsai, H. M. , Sussman, I. I. , and Nagel, R. L. , 1994, “ Shear Stress Enhances the Proteolysis of von Willebrand Factor in Normal Plasma,” Blood, 83(8), pp. 2171–2179. [PubMed]
Miller, L. W. , Pagani, F. D. , Russell, S. D. , John, R. , Boyle, A. J. , Aaronson, K. D. , Conte, J. V. , Naka, Y. , Mancini, D. , Delgado, R. M. , Macgillivray, T. E. , Farrar, D. J. , and Frazier, O. H. , 2007, “ Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation,” N. Engl. J. Med., 9(357), pp. 885–896. [CrossRef]
Sheikh, F. H. , and Russell, S. D. , 2011, “ HeartMate II Continuous-Flow Left Ventricular Assist System,” Expert Rev. Med. Devices, 8(1), pp. 11–21. [CrossRef] [PubMed]
Starling, R. , Naka, Y. , Boyle, A. , Gonzalez-Stawinski, G. , John, R. , Jorde, U. , Russel, S. , Conte, J. , Aaronson, K. , McGee , E., Jr. , Cotts, W. , DeNofrio, D. , Pham, D. , Farrar, D. , and Pagani, F. , 2011, “ Results of the Post-U.S. Food and Drug Administration-Approval Study With a Continuous Flow Left Ventricular Assist Device as a Bridge to Heart Transplantation: A Prospective Study Using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support),” J. Am. Coll. Cardiol., 57(19), pp. 1890–1898. [CrossRef] [PubMed]
Schüle, C. Y. , Affeld, K. , Kossatz, M. , Paschereit, C. O. , and Kertzscher, U. , 2017, “ Turbulence Measurements in an Axial Rotary Blood Pump With Laser Doppler Velocimetry,” Int. J. Artif. Organs, 40(3), pp. 109–117. [CrossRef]
Pagani, F. D. , Miller, L. W. , Russell, S. D. , Aaronson, K. D. , John, R. , Boyle, A. J. , Conte, J. V. , Bogaev, R. C. , MacGillivray, T. E. , Naka, Y. , Mancini, D. , Massey, H. T. , Chen, L. , Klodell, C. T. , Aranda, J. M. , Moazami, N. , Ewald, G. A. , Farrar, D. J. , and Frazier, O. H. , 2009, “ Extended Mechanical Circulatory Support With a Continuous-Flow Rotary Left Ventricular Assist Device,” J. Am. Coll. Cardiol., 54(4), pp. 312–321. [CrossRef] [PubMed]
Slaughter, M. S. , Rogers, J. G. , Milano, C. A. , Russell, S. D. , Conte, J. V. , Feldman, D. , Sun, B. , Tatooles, A. J. , Delgado, R. M. , Long, J. W. , Wozniak, T. C. , Ghumman, W. , Farrar, D. J. , and Frazier, O. H. , 2009, “ Advanced Heart Failure Treated With Continuous-Flow Left Ventricular Assist Device,” N. Engl. J. Med., 361(23), pp. 2241–2251. [CrossRef] [PubMed]
Cooper, B. T. , Roszelle, B. N. , Long, T. C. , Deutsch, S. , and Manning, K. B. , 2010, “ The Influence of Operational Protocol on the Fluid Dynamics in the 12 CC Penn State Pulsatile Pediatric Ventricular Assist Device: The Effect of End-Diastolic Delay,” Artif. Organs, 34(4), pp. 1–23. [CrossRef]
Long, T. C. , Pearson, J. J. , Hankinson, A. C. , Deutsch, S. , and Manning, K. B. , 2012, “ An In vivo Fluid Dynamic Study of Pediatric Cannulae: The Value of Animal Studies to Predict Human Flow,” ASME J. Biomech. Eng., 134(4), p. 044501.
Nanna, J. C. , Wivholm, J. A. , Deutsch, S. , and Manning, K. B. , 2011, “ Flow Field Study Comparing Design Iterations of a 50 CC Left Ventricular Assist Device,” ASAIO J., 57(5), pp. 349–357. [CrossRef] [PubMed]
Roszelle, B. N. , Cooper, B. T. , Long, T. C. , Deutsch, S. , and Manning, K. B. , 2008, “ The 12 CC Penn State Pulsatile Pediatric Ventricular Assist Device: Flow Field Observations at a Reduced Beat Rate With Application to Weaning,” ASAIO J., 54(3), pp. 325–331. [CrossRef] [PubMed]
Ziv, O. , Dizon, J. , Thosani, A. , Naka, Y. , Magnano, A. R. , and Garan, H. , 2005, “ Effects of Left Ventricular Assist Device Therapy on Ventricular Arrhythmias,” J. Am. Coll. Cardiol., 45(9), pp. 1428–1434. [CrossRef] [PubMed]
Hochareon, P. , Manning, K. B. , Fontaine, A. A. , Tarbell, J. M. , and Deutsch, S. , 2004, “ Correlation of In vivo Clot Deposition With the Flow Characteristics in the 50 Cc Penn State Artificial Heart: A Preliminary Study,” ASAIO J., 50(6), pp. 537–542. [CrossRef] [PubMed]
Kundu, P. K. , Cohen, I. M. , and Dowling, D. R. , 2016, Fluid Mechanics, Elsevier, New York.
Baldwin, J. T. , Deutsch, S. , Petrie, H. L. , and Tarbell, J. M. , 1993, “ Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements,” ASME J. Biomech. Eng., 115(4A), pp. 396–403. [CrossRef]
Manning, K. B. , and Miller, G. E. , 2002, “ Flow Through an Outlet Cannula of a Rotary Ventricular Assist Device,” Artif. Organs, 26(8), pp. 714–723. [CrossRef] [PubMed]
Prasad, A. K. , 2000, “ Particle Image Velocimetry,” Curr. Sci., 79(1), pp. 51–60.

Figures

Grahic Jump Location
Fig. 4

Mean velocity contours at (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes at the outlet cannula under steady flow conditions

Grahic Jump Location
Fig. 2

(a) Position of the five parallel planes collected throughout the experiment, (b) geometric sketch of the HMII acrylic outlet model, and (c) four temporal locations of PIV data collection during the cardiac cycle

Grahic Jump Location
Fig. 1

(a) Acrylic outlet model, pulsatile pump, compliance chamber, and unidirectional valve used throughout the experiments in the mock flow loop; (b) rendition of the HeartMate II left ventricular assist device [19]; and (c) computer generated model of the HMII outlet cannula

Grahic Jump Location
Fig. 3

Rendition of the three-dimensional flow pattern introduced to the outlet cannula

Grahic Jump Location
Fig. 12

(a) Perpendicular image illustrating the radial clockwise flow pattern of the flow exiting the HMII and (b) approximate path used to calculate the exposure time of vWF

Grahic Jump Location
Fig. 5

Illustration of the (a) −2 mm and (b) +2 mm planes at acceleration, peak systole, deceleration, and diastole

Grahic Jump Location
Fig. 6

Acceleration phase mean velocity maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Grahic Jump Location
Fig. 7

Peak systole phase mean velocity maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Grahic Jump Location
Fig. 8

Acceleration phase principal RNS maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Grahic Jump Location
Fig. 9

Acceleration phase principal RSS maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Grahic Jump Location
Fig. 10

Peak systole principal RNS maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Grahic Jump Location
Fig. 11

Peak systole RSS maps at the (a) −4 mm, (b) −2 mm, (c) centerline, (d) +2 mm, and (e) +4 mm planes in the outlet cannula. (f) Cardiac cycle with four locations of data collection.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In