0
Research Papers

Benchmark for Numerical Models of Stented Coronary Bifurcation Flow

[+] Author and Article Information
P. García Carrascal

Depto. Ingeniería Energética y Fluidomecánica,
Escuela de Ingenierías Industriales,
Universidad de Valladolid,
Paseo del Cauce, 59,
Valladolid 47011, Spain
e-mail: pedro.garcia@eii.uva.es

J. García García

Depto. Ingeniería Energética,
Escuela Técnica Superior de Industriales,
Universidad Politécnica de Madrid,
C/José Gutiérrez Abascal, 2,
Madrid 28006, Spain
e-mail: javier.garciag@upm.es

J. Sierra Pallares

Depto. Ingeniería Energética y Fluidomecánica,
Escuela de Ingenierías Industriales,
Universidad de Valladolid,
Paseo del Cauce, 59,
Valladolid 47011, Spain
e-mail: jsierra@eii.uva.es

F. Castro Ruiz

Depto. Ingeniería Energética y Fluidomecánica,
Escuela de Ingenierías Industriales,
Universidad de Valladolid,
Paseo del Cauce, 59,
Valladolid 47011, Spain
e-mail: castro@eii.uva.es

F. J. Manuel Martín

Depto. Ingeniería Energética,
Escuela Técnica Superior de Industriales,
Universidad Politécnica de Madrid,
C/José Gutiérrez Abascal, 2,
Madrid 28006, Spain
e-mail: fmanuel@etsii.upm.es

Manuscript received October 10, 2017; final manuscript received February 27, 2018; published online May 24, 2018. Assoc. Editor: Alison Marsden.

J Biomech Eng 140(9), 091009 (May 24, 2018) (10 pages) Paper No: BIO-17-1458; doi: 10.1115/1.4039676 History: Received October 10, 2017; Revised February 27, 2018

In-stent restenosis ails many patients who have undergone stenting. When the stented artery is a bifurcation, the intervention is particularly critical because of the complex stent geometry involved in these structures. Computational fluid dynamics (CFD) has been shown to be an effective approach when modeling blood flow behavior and understanding the mechanisms that underlie in-stent restenosis. However, these CFD models require validation through experimental data in order to be reliable. It is with this purpose in mind that we performed particle image velocimetry (PIV) measurements of velocity fields within flows through a simplified coronary bifurcation. Although the flow in this simplified bifurcation differs from the actual blood flow, it emulates the main fluid dynamic mechanisms found in hemodynamic flow. Experimental measurements were performed for several stenting techniques in both steady and unsteady flow conditions. The test conditions were strictly controlled, and uncertainty was accurately predicted. The results obtained in this research represent readily accessible, easy to emulate, detailed velocity fields and geometry, and they have been successfully used to validate our numerical model. These data can be used as a benchmark for further development of numerical CFD modeling in terms of comparison of the main flow pattern characteristics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tarbell, J. M. , Shi, Z.-D. , Dunn, J. , and Jo, H. , 2014, “ Fluid Mechanics, Arterial Disease, and Gene Expression,” Annu. Rev. Fluid Mech., 46(1), pp. 591–614. [CrossRef] [PubMed]
Greil, O. , Kleinschmidt, T. , Weiss, W. , Wolf, O. , Heider, P. , Schaffner, S. , Gianotti, M. , Schmid, T. , Liepsch, D. , and Berger, H. , 2005, “ Flow Velocities After Carotid Artery Stenting: Impact of Stent Design. A Fluid Dynamics Study in a Carotid Artery Model With Laser Doppler Anemometry,” Cardiovasc. Interventional Radiol., 28(1), pp. 66–76. [CrossRef]
Katritsis, D. G. , Theodorakakos, A. , Pantos, I. , Gavaises, M. , Karcanias, N. , and Efstathopoulos, E. P. , 2012, “ Flow Patterns at Stented Coronary Bifurcations Computational Fluid Dynamics Analysis,” Circ.-Cardiovasc. Interventions, 5(4), pp. 530–539. [CrossRef]
Morlacchi, S. , Chiastra, C. , Gastaldi, D. , Pennati, G. , Dubini, G. , and Migliavacca, F. , 2011, “ Sequential Structural and Fluid Dynamic Numerical Simulations of a Stented Bifurcated Coronary Artery,” ASME J. Biomech. Eng., 133(12), p. 121010. [CrossRef]
Buchmann, N. A. , Yamamoto, M. , Jermy, M. , and David, T. , 2010, “ Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD) Modelling of Carotid Artery Haemodynamics Under Steady Flow: A Validation Study,” J. Biomech. Sci. Eng., 5(4), pp. 421–436. [CrossRef]
Charonko, J. , Karri, S. , Schmieg, J. , Prabhu, S. , and Vlachos, P. , 2009, “ In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress,” Ann. Biomed. Eng., 37(7), pp. 1310–1321. [CrossRef] [PubMed]
Deplano, V. , and Siouffi, M. , 1999, “ Experimental and Numerical Study of Pulsatile Flows Through Stenosis: Wall Shear Stress Analysis,” J. Biomech., 32(10), pp. 1081–1090. [CrossRef] [PubMed]
Ku, D. N. , and Giddens, D. P. , 1987, “ Laser Doppler Anemometer Measurements of a Pulsatile Flow in a Model Carotid Bifurcation,” J. Biomech., 20(4), pp. 407–421. [CrossRef] [PubMed]
Raben, J. S. , Morlacchi, S. , Burzotta, F. , Migliavacca, F. , and Vlachos, P. P. , 2015, “ Local Blood Flow Patterns in Stented Coronary Bifurcations: An Experimental and Numerical Study,” J. Appl. Biomater. Funct. Mater., 13(2), pp. E116–E126. [PubMed]
García Carrascal, P. , 2015, “ Estudio experimental del patrón de flujo de un modelo de una bifurcación coronaria con stent,” Ph.D. thesis, University of Valladolid, Valladolid, Spain.
García García, J. , Manuel Martín, F. J. , Doce Carrasco, Y. , Castro Ruiz, F. , Crespo Martínez, A. , Goicolea Marin, P. , and Fernandez Diaz, J. A. , 2012, “ Pulsatile Flow in Coronary Bifurcations for Different Stenting Techniques,” Tenth World Congress on Computational Mechanics, São Paulo, Brazil, July 8–13, Paper No. 18404. https://www.researchgate.net/publication/269196130_PULSATILE_FLOW_IN_CORONARY_BIFURCATIONS_FOR_DIFFERENT_STENTING_TECHNIQUES
García García, J. , Garcia Carrascal, P. , Castro Ruiz, F. , Manuel Martín, F. J. , and Fernandez Diaz, J. A. , 2017, “ Effects of Bifurcation-Specific and Conventional Stents on Coronary Bifurcation Flow. An Experimental and Numerical Study,” J. Biomech., 54, pp. 64–72. [CrossRef] [PubMed]
Riley, W. A. , Barnes, R. W. , Evans, G. W. , and Burke, G. L. , 1992, “ Ultrasonic Measurements of the Elastic-Modulus of the Common Carotid-Artery. The Atherosclerosis Risk in Communities (ARIC) Study,” Stroke, 23(7), pp. 952–956. [CrossRef] [PubMed]
Berry, J. L. , Manoach, E. , Mekkaoui, C. , Rolland, P. H. , Moore, J. E. , and Rachev, A. , 2002, “ Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis,” J. Vasc. Interventional Radiol., 13(1), pp. 97–105. [CrossRef]
Chandran, K. B. , Rittgers, S. E. , and Yoganathan, A. P. , 2012, Biofluid Mechanics: The Human Circulation, CRC Press, Boca Raton, FL.
Na, S.-H. , Koo, B.-K. , Kim, J. C. , Yang, H.-M. , Park, K.-W. , Kang, H.-J. , Kim, H.-S. , Oh, B.-H. , and Park, Y.-B. , 2011, “ Evaluation of Local Flow Conditions in Jailed Side Branch Lesions Using Computational Fluid Dynamics,” Korean Circ. J., 41(2), pp. 91–96. [CrossRef] [PubMed]
Finet, G. , Gilard, M. , Perrenot, B. , Rioufol, G. , Motreff, P. , Gavit, L. , and Prost, R. , 2008, “ Fractal Geometry of Arterial Coronary Bifurcations: A Quantitative Coronary Angiography and Intravascular Ultrasound Analysis,” EuroIntervention, 3(4), pp. 490–498. [CrossRef] [PubMed]
Willert, C. E. , and Gharib, M. , 1991, “ Digital Particle Image Velocimetry,” Exp. Fluids, 10(4), pp. 181–193. [CrossRef]
Charonko, J. J. , and Vlachos, P. P. , 2013, “ Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio,” Meas. Sci. Technol., 24(6), p. 065301.
van der Giessen, A. G. , Groen, H. C. , Doriot, P.-A. , de Feyter, P. J. , van der Steen, A. F. W. , van de Vosse, F. N. , Wentzel, J. J. , and Gijsen, F. J. H. , 2011, “ The Influence of Boundary Conditions on Wall Shear Stress Distribution in Patients Specific Coronary Trees,” J. Biomech., 44(6), pp. 1089–1095. [CrossRef] [PubMed]
Davies, J. E. , Whinnett, Z. I. , Francis, D. P. , Manisty, C. H. , Aguado-Sierra, J. , Willson, K. , Foale, R. A. , Malik, I. S. , Hughes, A. D. , Parker, K. H. , and Mayet, J. , 2006, “ Evidence of a Dominant Backward-Propagating ‘Suction’ Wave Responsible for Diastolic Coronary Filling in Humans, Attenuated in Left Ventricular Hypertrophy,” Circulation, 113, pp. 1768–1778. [CrossRef] [PubMed]
Westerhof, N. , Stergiopulos, N. , and Noble, M. I. M. , 2010, Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, Springer, Berlin. [CrossRef]
Chiastra, C. , Morlacchi, S. , Gallo, D. , Morbiducci, U. , Cardenes, R. , Larrabide, I. , and Migliavacca, F. , 2013, “ Computational Fluid Dynamic Simulations of Image-Based Stented Coronary Bifurcation Models,” J. R. Soc. Interface, 10(84), p. 20130193.
Babiker, M. H. , Gonzalez, L. F. , Ryan, J. , Albuquerque, F. , Collins, D. , Elvikis, A. , and Frakes, D. H. , 2012, “ Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics,” J. Biomech., 45(3), pp. 440–447. [CrossRef] [PubMed]
Chiastra, C. , Morlacchi, S. , Pereira, S. , Dubini, G. , and Migliavacca, F. , 2012, “ Computational Fluid Dynamics of Stented Coronary Bifurcations Studied With a Hybrid Discretization Method,” Eur. J. Mech. B, 35, pp. 76–84. [CrossRef]
Sankaran, S. , and Marsden, A. L. , 2011, “ A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations,” ASME J. Biomech. Eng., 133(3), p. 031001. [CrossRef]
Sankaran, S. , Kim, H. J. , Choi, G. , and Taylor, C. A. , 2016, “ Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity,” J. Biomech., 49(12), pp. 2540–2547. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Coronary bifurcation geometry used. (b)–(d) Outline of the stent configurations in the bifurcation. It can be observed that the two stent configurations (S12 and S21) derive from the simple stent configurations (S1 and S2, respectively).

Grahic Jump Location
Fig. 2

Schematic setup diagram, comprised of a hydraulic unsteady flow installation, a 2D2C PIV system, and a computer-driven controller

Grahic Jump Location
Fig. 3

RMS images of stented bifurcation models. The stent slice corresponding to the measurement section is highlighted in light gray (in red in the electronic version). The stent struts positioned between the measurement section and the PIV camera are highlighted in black.

Grahic Jump Location
Fig. 4

Example of uncertainty field for model S21 in a detailed view. It can be seen how most of the flow field displays around 8% uncertainty, except in the surroundings of the stent shadows, where this value increases.

Grahic Jump Location
Fig. 5

Typical velocity progression along a cardiac pulse through a human left anterior coronary bifurcation (inspired by Davies et al. [21]) (left). The velocity pulse produced by the hydraulic installation at the opening of the bifurcation, which was used for unsteady measurements (right).

Grahic Jump Location
Fig. 6

Normalized velocity fields under SS, S1, S2, S12, and S21, for steady flow and a detailed view. Observe how protruding stent struts disturb the flow pattern.

Grahic Jump Location
Fig. 7

Maximum velocity and flow rate evolution along a pulse under S12 (sections y = −17 mm for PMB; y = 16 mm for DMB and SB) and S21 (sections y = −18 mm for PMB; y = 12 mm for DMB and SB). The flow rate through the SB decreases to almost zero after instant 0.5 s.

Grahic Jump Location
Fig. 8

Velocity fields of four pulse instants for a general view. The four instants are acceleration phase, maximum velocity instant, deceleration phase, and minimum velocity phase. Shifts in flow patterns along the pulse may be observed in both models.

Grahic Jump Location
Fig. 9

Comparison for steady cases. Top: nondimensional velocity contours at the middle plane obtained from numerical simulations (left) and PIV measurements (right). Bottom: velocity profiles at the middle plane obtained from PIV measurements and numerical simulations. The profiles correspond to the center of the bifurcation. The gray band corresponds to experimental error.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In