0
Research Papers

Properties of the Temporomandibular Joint in Growing Pigs

[+] Author and Article Information
Jesse Lowe

Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15260;
Center for Craniofacial Regeneration,
University of Pittsburgh,
Pittsburgh, PA 15260

Rohan Bansal

Center for Craniofacial Regeneration,
University of Pittsburgh,
Pittsburgh, PA 15260

Stephen F. Badylak

Department of Surgery,
University of Pittsburgh,
Pittsburgh, PA 15260;
McGowan Institute for Regenerative Medicine,
University of Pittsburgh,
Pittsburgh, PA 15260

Bryan N. Brown

Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15260;
McGowan Institute for Regenerative Medicine,
University of Pittsburgh,
Pittsburgh, PA 15260

Willian L. Chung

Oral and Maxillofacial Surgery,
University of Pittsburgh,
Pittsburgh, PA 15260

Alejandro J. Almarza

Department of Oral Biology,
University of Pittsburgh,
Pittsburgh, PA 15260;
Department of Bioengineering,
University of Pittsburgh,
566 Salk Hall, 3501 Terrace Street,
Pittsburgh, PA 15260;
Center for Craniofacial Regeneration,
University of Pittsburgh,
Pittsburgh, PA 15260;
McGowan Institute for Regenerative Medicine,
University of Pittsburgh,
Pittsburgh, PA 15260
e-mail: aja19@pitt.edu

1Corresponding author.

Manuscript received June 19, 2017; final manuscript received February 23, 2018; published online April 19, 2018. Editor: Beth A. Winkelstein.

J Biomech Eng 140(7), 071002 (Apr 19, 2018) (6 pages) Paper No: BIO-17-1265; doi: 10.1115/1.4039624 History: Received June 19, 2017; Revised February 23, 2018

A subset of temporomandibular joint (TMJ) disorders is attributed to joint degeneration. The pig has been considered the preferred in vivo model for the evaluation of potential therapies for TMJ disorders, and practical considerations such as cost and husbandry issues have favored the use of young, skeletally immature animals. However, the effect of growth on the biochemical and biomechanical properties of the TMJ disk and articulating cartilage has not been examined. The present study investigates the effect of age on the biochemical and biomechanical properties of healthy porcine TMJs at 3, 6, and 9 months of age. DNA, hydroxyproline, and glycosaminoglycan (GAG) content were determined and the disks and condyles were tested in uniaxial unconfined stress relaxation compression from 10% to 30% strain. TMJ disks were further assessed with a tensile test to failure technique, which included the ability to test multiple samples from the same region of an individual disk to minimize the intraspecimen variation. No differences in biochemical properties for the disk or compressive properties at 30% stress relaxation in the disk and condylar cartilage were found. In tension, no differences were observed for peak stress and tensile modulus. The collagen content of the condyle was higher at 9 months than 3 months (p < 0.05), and the GAG content was higher at 9 months than 6 months (p < 0.05). There was a trend of increased compressive instantaneous modulus with age. As such, age-matched controls for growing pigs are probably appropriate for most parameters measured.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Beek, M. , Koolstra, J. H. , van Ruijven, L. J. , and van Eijden, T. M. , 2000, “ Three-Dimensional Finite Element Analysis of the Human Temporomandibular Joint Disc,” J. Biomech., 33(3), pp. 307–316. [CrossRef] [PubMed]
Donzelli, P. S. , Gallo, L. M. , Spilker, R. L. , and Palla, S. , 2004, “ Biphasic Finite Element Simulation of the TMJ Disc From In Vivo Kinematic and Geometric Measurements,” J. Biomech., 37(11), pp. 1787–1791. [CrossRef] [PubMed]
Tanaka, E. , del Pozo, R. , Tanaka, M. , Asai, D. , Hirose, M. , Iwabe, T. , and Tanne, K. , 2004, “ Three-Dimensional Finite Element Analysis of Human Temporomandibular Joint With and Without Disc Displacement During Jaw Opening,” Med. Eng. Phys., 26(6), pp. 503–511. [CrossRef] [PubMed]
Tanaka, E. , and van Eijden, T. , 2003, “ Biomechanical Behavior of the Temporomandibular Joint Disc,” Crit. Rev. Oral Biol. Med., 14(2), pp. 138–150. [CrossRef] [PubMed]
Estabrooks, L. N. , Fairbanks, C. E. , Collett, R. J. , and Miller, L. , 1990, “ A Retrospective Evaluation of 301 TMJ Proplast-Teflon Implants,” Oral Surg. Oral Med. Oral Pathol., 70(3), pp. 381–386. [CrossRef] [PubMed]
Henry, C. H. , and Wolford, L. M. , 1993, “ Treatment Outcomes for Temporomandibular Joint Reconstruction After Proplast-Teflon Implant Failure,” J. Oral Maxillofac. Surg., 51(4), pp. 352–360. [CrossRef] [PubMed]
Brown, B. N. , Chung, W. L. , Almarza, A. J. , Pavlick, M. D. , Reppas, S. N. , Ochs, M. W. , Russell, A. J. , and Badylak, S. F. , 2012, “ Inductive, Scaffold-Based, Regenerative Medicine Approach to Reconstruction of the Temporomandibular Joint Disk,” J. Oral Maxillofac. Surg., 70(11), pp. 2656–2668. [CrossRef] [PubMed]
Brown, B. N. , Chung, W. L. , Pavlick, M. , Reppas, S. , Ochs, M. W. , Russell, A. J. , and Badylak, S. F. , 2011, “ Extracellular Matrix as an Inductive Template for Temporomandibular Joint Meniscus Reconstruction: A Pilot Study,” J. Oral Maxillofac. Surg., 69(12), pp. e488–e505. [CrossRef] [PubMed]
Puelacher, W. C. , Wisser, J. , Vacanti, C. A. , Ferraro, N. F. , Jaramillo, D. , and Vacanti, J. P. , 1994, “ Temporomandibular Joint Disc Replacement Made by Tissue-Engineered Growth of Cartilage,” J. Oral Maxillofac. Surg., 52(11), pp. 1172–1178. [CrossRef] [PubMed]
Tarafder, S. , Koch, A. , Jun, Y. , Chou, C. , Awadallah, M. R. , and Lee, C. H. , 2016, “ Micro-Precise Spatiotemporal Delivery System Embedded in 3D Printing for Complex Tissue Regeneration,” Biofabrication, 8(2), p. 025003. [CrossRef] [PubMed]
Wu, Y. , Gong, Z. , Li, J. , Meng, Q. , Fang, W. , and Long, X. , 2014, “ The Pilot Study of Fibrin With Temporomandibular Joint Derived Synovial Stem Cells in Repairing TMJ Disc Perforation,” Biomed. Res. Int., 2014, p. 454021. [PubMed]
Hagandora, C. K. , Tudares, M. A. , and Almarza, A. J. , 2012, “ The Effect of Magnesium Ion Concentration on the Fibrocartilage Regeneration Potential of Goat Costal Chondrocytes,” Ann. Biomed. Eng., 40(3), pp. 688–696. [CrossRef] [PubMed]
Almarza, A. J. , and Athanasiou, K. A. , 2005, “ Effects of Initial Cell Seeding Density for the Tissue Engineering of the Temporomandibular Joint Disc,” Ann. Biomed. Eng., 33(7), pp. 943–950. [CrossRef] [PubMed]
Almarza, A. J. , and Athanasiou, K. A. , 2006, “ Evaluation of Three Growth Factors in Combinations of Two for Temporomandibular Joint Disc Tissue Engineering,” Arch. Oral Biol., 51(3), pp. 215–221. [CrossRef] [PubMed]
Hagandora, C. K. , Gao, J. , Wang, Y. , and Almarza, A. J. , 2013, “ Poly (Glycerol Sebacate): A Novel Scaffold Material for Temporomandibular Joint Disc Engineering,” Tissue Eng., Part A, 19(5–6), pp. 729–737. [CrossRef]
Almarza, A. J. , and Athanasiou, K. A. , 2004, “ Seeding Techniques and Scaffolding Choice for Tissue Engineering of the Temporomandibular Joint Disk,” Tissue Eng., 10(11–12), pp. 1787–1795. [CrossRef] [PubMed]
Reiland, S. , 1978, “ Growth and Skeletal Development of the Pig,” Acta Radiol. Suppl., 358, pp. 15–22. [PubMed]
Almarza, A. J. , Bean, A. C. , Baggett, L. S. , and Athanasiou, K. A. , 2006, “ Biochemical Analysis of the Porcine Temporomandibular Joint Disc,” Br. J. Oral Maxillofac. Surg., 44(2), pp. 124–128. [CrossRef] [PubMed]
Beatty, M. W. , Bruno, M. J. , Iwasaki, L. R. , and Nickel, J. C. , 2001, “ Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk,” J. Biomed. Mater. Res., 57(1), pp. 25–34. [CrossRef] [PubMed]
Chladek, W. , and Czerwik, I. , 2008, “ Mechanical Properties of Temporomandibular Joint Disc on the Basis of Porcine Preparation Investigations,” Acta Bioeng. Biomech., 10(4), pp. 15–20. [PubMed]
Detamore, M. S. , and Athanasiou, K. A. , 2003, “ Tensile Properties of the Porcine Temporomandibular Joint Disc,” ASME J. Biomech. Eng., 125(4), pp. 558–565. [CrossRef]
Detamore, M. S. , Orfanos, J. G. , Almarza, A. J. , French, M. M. , Wong, M. E. , and Athanasiou, K. A. , 2005, “ Quantitative Analysis and Comparative Regional Investigation of the Extracellular Matrix of the Porcine Temporomandibular Joint Disc,” Matrix Biol., 24(1), pp. 45–57. [CrossRef] [PubMed]
Kalpakci, K. N. , Willard, V. P. , Wong, M. E. , and Athanasiou, K. A. , 2011, “ An Interspecies Comparison of the Temporomandibular Joint Disc,” J. Dent. Res., 90(2), pp. 193–198. [CrossRef] [PubMed]
Kang, H. , Bao, G. , Dong, Y. , Yi, X. , Chao, Y. , and Chen, M. , 2000, “ Tensile Mechanics of Mandibular Condylar Cartilage,” Hua Xi Kou Qiang Yi Xue Za Zhi, 18(2), pp. 85–87. [PubMed]
Kim, K. W. , Wong, M. E. , Helfrick, J. F. , Thomas, J. B. , and Athanasiou, K. A. , 2003, “ Biomechanical Tissue Characterization of the Superior Joint Space of the Porcine Temporomandibular Joint,” Ann. Biomed. Eng., 31(8), pp. 924–930. [CrossRef] [PubMed]
Koolstra, J. H. , Tanaka, E. , and Van Eijden, T. M. , 2007, “ Viscoelastic Material Model for the Temporomandibular Joint Disc Derived From Dynamic Shear Tests or Strain-Relaxation Tests,” J. Biomech., 40(10), pp. 2330–2334. [CrossRef] [PubMed]
Kuboki, T. , Shinoda, M. , Orsini, M. G. , and Yamashita, A. , 1997, “ Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc,” J. Dent. Res., 76(11), pp. 1760–1769. [CrossRef] [PubMed]
Lamela, M. J. , Fernandez, P. , Ramos, A. , Fernandez-Canteli, A. , and Tanaka, E. , 2013, “ Dynamic Compressive Properties of Articular Cartilages in the Porcine Temporomandibular Joint,” J. Mech. Behav. Biomed. Mater., 23, pp. 62–70. [CrossRef] [PubMed]
Lumpkins, S. B. , and McFetridge, P. S. , 2009, “ Regional Variations in the Viscoelastic Compressive Properties of the Temporomandibular Joint Disc and Implications Toward Tissue Engineering,” J. Biomed. Mater. Res. A, 90(3), pp. 784–791. [CrossRef] [PubMed]
Matuska, A. M. , Muller, S. , Dolwick, M. F. , and McFetridge, P. S. , 2016, “ Biomechanical and Biochemical Outcomes of Porcine Temporomandibular Joint Disc Deformation,” Arch. Oral Biol., 64, pp. 72–79. [CrossRef] [PubMed]
Murphy, M. K. , Arzi, B. , Hu, J. C. , and Athanasiou, K. A. , 2013, “ Tensile Characterization of Porcine Temporomandibular Joint Disc Attachments,” J. Dent. Res., 92(8), pp. 753–758. [CrossRef] [PubMed]
Ruggiero, L. , Zimmerman, B. K. , Park, M. , Han, L. , Wang, L. , Burris, D. L. , and Lu, X. L. , 2015, “ Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage,” Ann. Biomed. Eng., 43(11), pp. 2652–2662. [CrossRef] [PubMed]
Singh, M. , and Detamore, M. S. , 2008, “ Tensile Properties of the Mandibular Condylar Cartilage,” ASME J. Biomech. Eng., 130(1), p. 011009. [CrossRef]
Singh, M. , and Detamore, M. S. , 2009, “ Stress Relaxation Behavior of Mandibular Condylar Cartilage Under High-Strain Compression,” ASME J. Biomech. Eng., 131(6), p. 061008. [CrossRef]
Snider, G. R. , Lomakin, J. , Singh, M. , Gehrke, S. H. , and Detamore, M. S. , 2008, “ Regional Dynamic Tensile Properties of the TMJ Disc,” J. Dent. Res., 87(11), pp. 1053–1057. [CrossRef] [PubMed]
Tanaka, E. , Hanaoka, K. , van Eijden, T. , Tanaka, M. , Watanabe, M. , Nishi, M. , Kawai, N. , Murata, H. , Hamada, T. , and Tanne, K. , 2003, “ Dynamic Shear Properties of the Temporomandibular Joint Disc,” J. Dent. Res., 82(3), pp. 228–231. [CrossRef] [PubMed]
Tanaka, E. , Yamano, E. , Dalla-Bona, D. A. , Watanabe, M. , Inubushi, T. , Shirakura, M. , Sano, R. , Takahashi, K. , van Eijden, T. , and Tanne, K. , 2006, “ Dynamic Compressive Properties of the Mandibular Condylar Cartilage,” J. Dent. Res., 85(6), pp. 571–575. [CrossRef] [PubMed]
Willard, V. P. , Kalpakci, K. N. , Reimer, A. J. , and Athanasiou, K. A. , 2012, “ The Regional Contribution of Glycosaminoglycans to Temporomandibular Joint Disc Compressive Properties,” ASME J. Biomech. Eng., 134(1), p. 011011. [CrossRef]
Hagandora, C. K. , Chase, T. W. , and Almarza, A. J. , 2011, “ A Comparison of the Mechanical Properties of the Goat Temporomandibular Joint Disc to the Mandibular Condylar Cartilage in Unconfined Compression,” J. Dent. Biomech., 2011(1), p. 212385. [PubMed]
Fazaeli, S. , Ghazanfari, S. , Everts, V. , Smit, T. H. , and Koolstra, J. H. , 2016, “ The Contribution of Collagen Fibers to the Mechanical Compressive Properties of the Temporomandibular Joint Disc,” Osteoarthritis Cartilage, 24(7), pp. 1292–1301. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Tensile testing sample preparation: (a) 8 mm biopsy punches are used to create a dogbone shape in the intermediate zone of the TMJ disk. Histology and compression samples were taken from the resulting 8 mm biopsy punches. A razor blade is then used to finish the dogbone shape. (b) Final dogbone shape placed into cryotome for sectioning.

Grahic Jump Location
Fig. 2

Hematoxylin and Eosin staining of MJ disks a 3, 6, and 9 months. Row 1: samples sectioned in the transverse plane. Row 2: samples sectioned in the sagittal plane. All images were taken from the intermediate zone. Scale bar is 100 μm.

Grahic Jump Location
Fig. 3

Biochemistry results for TMJ disks (n = 10 per group) and mandibular condyles (n = 10 per group). All error bars represent standard deviation. There were no significant differences detected in (a) DNA content. Significant differences were detected for (b) hydroxyproline content, and (c) GAG content between time points for both disks (white bars) and condyles (gray bars).

Grahic Jump Location
Fig. 4

Tensile results for TMJ disks (n = 7 per group). All error bars represent standard deviation. There were no significant differences detected in (a) tensile peak stress and (b) tensile modulus across age groups.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In