0
Research Papers

Frontal Plane Tibiofemoral Alignment is Strongly Related to Compartmental Knee Joint Contact Forces and Muscle Control Strategies During Stair Ascent

[+] Author and Article Information
Hunter J. Bennett

Department of Human Movement Sciences,
Old Dominion University,
2016 Student Recreation Center,
Norfolk, VA 23529
e-mail: hjbennet@odu.edu

Joshua T. Weinhandl

Department of Kinesiology, Recreation,
and Sport Studies,
The University of Tennessee,
322 HPER Building 1914 Andy Holt Avenue,
Knoxville, TN 37996-2700
e-mail: jweinhan@utk.edu

Kristina Fleenor

Department of Human Movement Sciences,
Old Dominion University,
2016 Student Recreation Center,
Norfolk, VA 23529
e-mail: Kflee006@odu.edu

Songning Zhang

Department of Kinesiology, Recreation,
and Sport Studies,
The University of Tennessee,
322 HPER Building 1914 Andy Holt Avenue,
Knoxville, TN 37996-2700
e-mail: szhang@utk.edu

1Corresponding author.

Manuscript received October 18, 2017; final manuscript received February 19, 2018; published online April 4, 2018. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 140(6), 061011 (Apr 04, 2018) (8 pages) Paper No: BIO-17-1472; doi: 10.1115/1.4039578 History: Received October 18, 2017; Revised February 19, 2018

Static frontal plane tibiofemoral alignment is an important factor in dynamic knee alignment and knee adduction moments (KAMs). However, little is known about the relationship between alignment and compartment contact forces or muscle control strategies. The purpose of this study was to estimate medial (MCF) and lateral (LCF) compartment knee joint contact forces and muscle forces during stair ascent using a musculoskeletal model implementing subject-specific knee alignments. Kinematic and kinetic data from 20 healthy individuals with radiographically confirmed varus or valgus knee alignments were simulated using alignment specific models to predict MCFs and LCFs. Muscle forces were determined using static optimization. Independent samples t-tests compared contact and muscle forces between groups during weight acceptance and during pushoff. The varus group exhibited increased weight acceptance peak MCFs, while the valgus group exhibited increased pushoff peak LCFs. The varus group utilized increased vasti muscle forces during weight acceptance and adductor forces during pushoff. The valgus group utilized increased abductor forces during pushoff. The alignment-dependent contact forces provide evidence of the significance of frontal plane knee alignment in healthy individuals, which may be important in considering future knee joint health. The differing muscle control strategies between alignments detail-specific neuromuscular responses to control frontal plane knee loads.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barrios, J. A. , and Strotman, D. E. , 2014, “ A Sex Comparison of Ambulatory Mechanics Relevant to Osteoarthritis in Individuals With and Without Asymptomatic Varus Knee Alignment,” J. Appl. Biomech., 30(5), pp. 632–636. [CrossRef] [PubMed]
Bennett, H. J. , Zhang, S. , Shen, G. , Weinhandl, J. T. , Paquette, M. R. , Reinbolt, J. A. , and Coe, D. P. , 2017, “ Effects of Toe-In and Wider Step Width in Stair Ascent With Different Knee Alignments,” Med. Sci. Sports Exerc., 49(3), pp. 563–572. [CrossRef] [PubMed]
Foroughi, N. , Smith, R. M. , Lange, A. K. , Baker, M. K. , Fiatarone Singh, M. A. , and Vanwanseele, B. , 2010, “ Dynamic Alignment and Its Association With Knee Adduction Moment in Medial Knee Osteoarthritis,” Knee, 17(3), pp. 210–216. [CrossRef] [PubMed]
Turcot, K. , Armand, S. , Lubbeke, A. , Fritschy, D. , Hoffmeyer, P. , and Suva, D. , 2013, “ Does Knee Alignment Influence Gait in Patients With Severe Knee Osteoarthritis?,” Clin. Biomech., 28(1), pp. 34–39. [CrossRef]
Halder, A. , Kutzner, I. , Graichen, F. , Heinlein, B. , Beier, A. , and Bergmann, G. , 2012, “ Influence of Limb Alignment on Mediolateral Loading in Total Knee Replacement: In Vivo Measurements in Five Patients,” J. Bone Jt. Surg. Am., 94(11), pp. 1023–1029. [CrossRef]
Bellemans, J. , Colyn, W. , Vandenneucker, H. , and Victor, J. , 2012, “ The Chitranjan Ranawat Award: Is Neutral Mechanical Alignment Normal for All Patients? the Concept of Constitutional Varus,” Clin. Orthop. Relat. Res., 470(1), pp. 45–53. [CrossRef] [PubMed]
Mundermann, A. , Dyrby, C. O. , D'Lima, D. D. , Colwell , C. W., Jr. , and Andriacchi, T. P. , 2008, “ In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement,” J. Orthop. Res., 26(9), pp. 1167–1172. [CrossRef] [PubMed]
Sharma, L. , Thonar, E. J. , Sum, J. A. , Lenz, M. E. , Dunlop, D. D. , Schnitzer, T. J. , Kirwan-Mellis, G. , and Andriacchi, T. P. , 1998, “ Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis,” Arthritis Rheumatol., 41(7), pp. 1233–1240. [CrossRef]
Trepczynski, A. , Kutzner, I. , Bergmann, G. , Taylor, W. R. , and Heller, M. O. , 2014, “ Modulation of the Relationship Between External Knee Adduction Moments and Medial Joint Contact Forces Across Subjects and Activities,” Arthritis Rheumatol., 66(5), pp. 1218–1227. [CrossRef] [PubMed]
Walter, J. P. , D'Lima, D. D. , Colwell , C. W., Jr. , and Fregly, B. J. , 2010, “ Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force During Gait,” J. Orthop. Res., 28(10), pp. 1348–1354. [CrossRef] [PubMed]
Zhao, D. , Banks, S. A. , D'Lima, D. D. , Colwell , C. W., Jr. , and Fregly, B. J. , 2007, “ In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities,” J. Orthop. Res., 25(5), pp. 593–602. [CrossRef] [PubMed]
Zhao, D. , Banks, S. A. , Mitchell, K. H. , D'Lima, D. D. , Colwell , C. W., Jr. , and Frely, B. J. , 2007, “ Correlation Between the Knee Adduction Torque and Medial Contact Force for a Variety of Gait Patterns,” J. Orthop. Res., 25(6), pp. 789–797. [CrossRef] [PubMed]
Thelen, D. G. , Chumanov, E. S. , Sherry, M. A. , and Heiderscheit, B. C. , 2006, “ Neuromusculoskeletal Models Provide Insights Into the Mechanisms and Rehabilitation of Hamstring Strains,” Exercise Sports Sci. Rev., 34(3), pp. 135–141. [CrossRef]
Zajac, F. E. , Neptune, R. R. , and Kautz, S. A. , 2002, “ Biomechanics and Muscle Coordination of Human Walking. Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations,” Gait Posture, 16(3), pp. 215–232. [CrossRef] [PubMed]
Lerner, Z. F. , DeMers, M. S. , Delp, S. L. , and Browning, R. C. , 2015, “ How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces,” J. Biomech., 48(4), pp. 644–650. [CrossRef] [PubMed]
Thelen, D. G. , Won Choi, K. , and Schmitz, A. M. , 2014, “ Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking,” ASME J. Biomech. Eng., 136(2), p. 021033. [CrossRef]
Winby, C. R. , Lloyd, D. G. , Besier, T. F. , and Kirk, T. B. , 2009, “ Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait,” J. Biomech., 42(14), pp. 2294–2300. [CrossRef] [PubMed]
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads,” J. Orthop. Res., 30(4), pp. 503–513. [CrossRef] [PubMed]
Heller, M. O. , Taylor, W. R. , Perka, C. , and Duda, G. N. , 2003, “ The Influence of Alignment on the Musculo-Skeletal Loading Conditions at the Knee,” Langenbecks Arch. Surg., 388(5), pp. 291–297. [CrossRef] [PubMed]
Kumar, D. , Rudolph, K. S. , and Manal, K. T. , 2012, “ EMG-Driven Modeling Approach to Muscle Force and Joint Load Estimations: Case Study in Knee Osteoarthritis,” J. Orthop. Res., 30(3), pp. 377–383. [CrossRef] [PubMed]
Tetsworth, K. , and Paley, D. , 1994, “ Malalignment and Degenerative Arthropathy,” Orthop. Clin. North Am., 25(3), pp. 367–377. [PubMed]
Ainsworth, B. E. , Haskell, W. L. , Hermann, S. D. , Meckes, N. , Bassett, D. R. J. , Tudor-Locke, C. , Greer, J. L. , Vezina, J. , Whitt-Glover, M. C. , and Leon, A. S. , 2011, “ 2011 Compendium of Physical Acitivites: A Second Update of Codes and MET Values,” Med. Sci. Sports Exercise, 43(8), pp. 1575–1581. [CrossRef]
Nadeau, S. , McFadyen, B. J. , and Malouin, F. , 2003, “ Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What are the Challenges Compared to Level Walking?,” Clin. Biomech., 18(10), pp. 950–959. [CrossRef]
Guo, M. , Axe, M. J. , and Manal, K. , 2007, “ The Influence of Foot Progression Angle on the Knee Adduction Moment During Walking and Stair Climbing in Pain Free Individuals With Knee Osteoarthritis,” Gait Posture, 26(3), pp. 436–441. [CrossRef] [PubMed]
Reiner, R. , Rabuffetti, M. , and Frigo, C. , 2002, “ Stair Ascent and Descent at Different Inclinations,” Gait Posture, 15(1), pp. 32–44. [CrossRef] [PubMed]
Lloyd, D. G. , and Buchanan, T. S. , 2001, “ Strategies of Muscular Support of Varus and Valgus Isometric Loads at the Human Knee,” J. Biomech., 34(10), pp. 1257–1267. [CrossRef] [PubMed]
Zhang, L. , and Wang, G. , 2001, “ Dynamic and Static Control of the Human Knee Joint in Abduction-Adduction,” J. Biomech., 34(9), pp. 1107–1115. [CrossRef] [PubMed]
Bennett, H. J. , Shen, G. , Weinhandl, J. T. , and Zhang, S. , 2016, “ Validation of the Greater Trochanter Method With Radiographic Measurements of Frontal Plane Hip Joint Centers and Knee Mechanical Axis Angles and Two Other Hip Joint Center Methods,” J. Biomech., 49(13), pp. 3047–3051. [CrossRef] [PubMed]
Sharma, L. , Song, J. , Felson, D. T. , Cahue, S. , Shamiyeh, E. , and Dunlop, D. D. , 2001, “ The Role of Knee Alignment in Disease Progression and Functional Decline in Knee Osteoarthritis,” JAMA, 286(2), pp. 188–195. [CrossRef] [PubMed]
Delp, S. L. , Loan, J. P. , Hoy, M. G. , Zajac, F. E. , Topp, E. L. , and Rosen, J. M. , 1990, “ An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures,” IEEE Trans. Biomed. Eng., 37(8), pp. 757–767. [CrossRef] [PubMed]
Paquette, M. R. , Klipple, G. , and Zhang, S. , 2015, “ Greater Step Widths Reduce Internal Knee Abduction Moments in Medial Compartment Knee Osteoarthritis Patients During Stair Ascent,” J. Appl. Biomech., 31(4), pp. 229–236. [CrossRef] [PubMed]
Weinhandl, J. T. , Earl-Boehm, J. E. , Ebersole, K. T. , Huddleston, W. E. , Armstrong, B. S. , and O'Connor, K. M. , 2013, “ Anticipatory Effects on Anterior Cruciate Ligament Loading During Sidestep Cutting,” Clin. Biomech., 28(6), pp. 655–663. [CrossRef]
Steele, K. M. , Demers, M. S. , Schwartz, M. H. , and Delp, S. L. , 2012, “ Compressive Tibiofemoral Force During Crouch Gait,” Gait Posture, 35(4), pp. 556–560. [CrossRef] [PubMed]
Rasnick, R. , Standifird, T. , Reinbolt, J. A. , Cates, H. E. , and Zhang, S. , 2016, “ Knee Joint Loads and Surrounding Muscle Forces During Stair Ascent in Patients With Total Knee Replacement,” PloS One, 11(6), p. e0156282. [CrossRef] [PubMed]
Adouni, M. , and Shirazi-Adl, A. , 2014, “ Partitioning of Knee Joint Internal Forces in Gait is Dictated by the Knee Adduction Angle and Not by the Knee Adduction Moment,” J. Biomech., 47(7), pp. 1696–1703. [CrossRef] [PubMed]
Hunt, M. A. , Birmingham, T. B. , Giffin, J. R. , and Jenkyn, T. R. , 2006, “ Associations Among Knee Adduction Moment, Frontal Plane Ground Reaction Force, and Lever Arm During Walking in Patients With Knee Osteoarthritis,” J. Biomech., 39(12), pp. 2213–2220. [CrossRef] [PubMed]
Shelburne, K. B. , Torry, M. R. , and Pandy, M. G. , 2006, “ Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait,” J. Orthop. Res., 24(10), pp. 1983–1990. [CrossRef] [PubMed]
Brouwer, G. M. , van Tol, A. W. , Bergink, A. P. , Belo, J. N. , Bernsen, R. M. D. , Reijman, M. , Pols, H. A. P. , and Bierma-Zeinstra, S. M. A. , 2007, “ Association Between Valgus and Varus Alignment and the Development and Progression of Radiographic Osteoarthritis of the Knee,” Arthritis Rheumatol., 56(4), pp. 1204–1211. [CrossRef]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Static and Dynamic Optimization Solutions for Gait are Practically Equivalent,” J. Biomech., 34(2), pp. 153–161. [CrossRef] [PubMed]
McFadyen, B. J. , and Winter, D. A. , 1988, “ An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent,” J. Biomech., 21(9), pp. 733–744. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Root-mean-square errors after residual reductions: (a) residual force and moment root-mean-square errors (RMS). Note: F: force errors in newtons (N); M: moment errors in newton meters (N·m); x, y, and z: anteroposterior, vertical, and mediolateral directions/axes. (b) Kinematic RMS errors. Note: pel_tx, pel_ty, and pel_tz are the pelvic translation errors in the anteroposterior, vertical, and mediolateral directions measured in centimeters (cm); pel: pelvis segment; rot: rotation about vertical axis; flex: flexion; add: adduction; dflx: dorsiflexion; tilt, list, rot, flex, add, and drsflx: rotation errors in degrees.

Grahic Jump Location
Fig. 2

Ensemble knee contact force curves (mean: lines and one standard deviation: shading) for varus and valgus alignment groups: (a) medial compartment contact force, (b) lateral compartment contact force, and (c) resultant contact force. Note: Varus group—solid black lines and dark shading; Valgus group—dashed black lines and light shading.

Grahic Jump Location
Fig. 3

Peak muscle forces during weight acceptance and pushoff of stance phase: (a) the varus group had larger vastus medialis, intermedius, and lateralis (VM, VI, VL, respectively) muscle forces than the valgus group during weight acceptance and (b) the varus group had larger gluteus maximus (GMAX_RES) and adductor (ADD_RES) resultant forces during pushoff. The valgus group had larger gluteus medius, gluteus minimus, and abductor resultant forces (GMED_RES, GMIN_RES, and ABD_RES, respectively) during pushoff. Notation for both graphs: RF: rectus femoris; VM, VI, and VL: vastus medialis, intermedius, and lateralis, respectively; SM: semimembranosus; ST: semitendinosus; BFLH and BFSH: biceps femoris long and short head, respectively; SART: Sartorius; TFL: tensor fascia lata; GRAC: gracilis; MED_GAS and LAT_GAS: medial and lateral gastrocnemius heads, respectively; GMAX_RES, GMED_RES, and GMIN_RES: gluteus maximus, medius, and minimus resultant forces, respectively; ABD_RES and ADD_RES: abductor and adductor resultant forces, respectively.

Grahic Jump Location
Fig. 4

Knee extensor muscle forces during stair ascent: (a) varus group knee extensor forces and (b) valgus group knee extensor forces. Note: RF: rectus femoris, VM: vastus medialis, VI: vastus intermedius, and VL: vastus lateralis.

Grahic Jump Location
Fig. 5

Knee flexor muscle forces during stair ascent: (a) varus group knee flexor forces and (b) valgus group knee flexor forces. Note: SM: semimembranosus, ST: semitendinosus, BFLH: biceps femoris long head, BFSH: biceps femoris short head, SAR: sartorius, MG: medial gastrocnemius, and LG: lateral gastrocnemius.

Grahic Jump Location
Fig. 6

Glute and tensor fascia lata muscle forces during stair ascent: (a) varus group glutes and tensor fascia lata forces and (b) valgus group glutes and tensor fascia lata forces. Note: GMED: gluteus medius, GMIN: gluteus minimus, GMAX: gluteus maximus, and TFL: tensor fascia lata; glute muscle forces are the vector norms of each muscles respective components.

Grahic Jump Location
Fig. 7

Summed abductor and adductor muscle forces during stair ascent: (a) varus group abductor and adductor forces and (b) valgus group abductor and adductor forces. Note: abductors and adductors are the sums of all muscles in respective groups.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In