Research Papers

A Uniaxial Testing Approach for Consistent Failure in Vascular Tissues

[+] Author and Article Information
Chao Sang

Department of Mechanical Engineering and
Materials Science,
University of Pittsburgh,
636 Benedum Hall 3700 O'Hara Street,
Pittsburgh, PA 15261
e-mail: chs176@pitt.edu

Spandan Maiti

Department of Bioengineering,
University of Pittsburgh,
302 Benedum Hall 3700 O'Hara Street,
Pittsburgh, PA 15261
e-mail: spm54@pitt.edu

Ronald N. Fortunato

Department of Mechanical Engineering and
Materials Science,
University of Pittsburgh,
636 Benedum Hall 3700 O'Hara Street,
Pittsburgh, PA 15261
e-mail: rnf6@pitt.edu

Julia Kofler

Department of Pathology,
University of Pittsburgh,
S701.3 Scaife Hall,
Pittsburgh, PA 15261
e-mail: koflerjk@upmc.edu

Anne M. Robertson

Department of Mechanical Engineering and
Materials Science,
University of Pittsburgh,
440 Benedum Hall 3700 O'Hara Street,
Pittsburgh, PA 15261
e-mail: rbertson@pitt.edu

Manuscript received October 5, 2017; final manuscript received February 7, 2018; published online April 4, 2018. Assoc. Editor: Seungik Baek.

J Biomech Eng 140(6), 061010 (Apr 04, 2018) (10 pages) Paper No: BIO-17-1449; doi: 10.1115/1.4039577 History: Received October 05, 2017; Revised February 07, 2018

Although uniaxial tensile testing is commonly used to evaluate failure properties of vascular tissue, there is no established protocol for specimen shape or gripping method. Large percentages of specimens are reported to fail near the clamp and can potentially confound the studies, or, if discarded will result in sample waste. The objective of this study is to identify sample geometry and clamping conditions that can achieve consistent failure in the midregion of small arterial specimens, even for vessels from older individuals. Failure location was assessed in 17 dogbone specimens from human cerebral and sheep carotid arteries using soft inserts. For comparison with commonly used protocols, an additional 22 rectangular samples were tested using either sandpaper or foam tape inserts. Midsample failure was achieved in 94% of the dogbone specimens, while only 14% of the rectangular samples failed in the midregion, the other 86% failing close to the clamps. Additionally, we found midregion failure was more likely to be abrupt, caused by cracking or necking. In contrast, clamp failure was more likely to be gradual and included a delamination mode not seen in midregion failure. Hence, this work provides an approach that can be used to obtain consistent midspecimen failure, avoiding confounding clamp-related artifacts. Furthermore, with consistent midregion failure, studies can be designed to image the failure process in small vascular samples providing valuable quantitative information about changes to collagen and elastin structure during the failure process.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Adams, H. P. , Butler, M. J. , Biller, J. , and Toffol, G. J. , 1986, “ Nonhemorrhagic Cerebral Infarction in Young Adults,” Arch. Neurol., 43(8), pp. 793–796. [CrossRef] [PubMed]
Broderick, J. P. , Brott, T. , Tomsick, T. , Miller, R. , and Huster, G. , 1993, “ Intracerebral Hemorrhage More Than Twice as Common as Subarachnoid Hemorrhage,” J. Neurosurg., 78(2), pp. 188–191. [CrossRef] [PubMed]
Hart, R. , and Easton, J. , 1985, “ Dissections,” Stroke, 16(6), pp. 925–927. [CrossRef] [PubMed]
Kelly, P. J. , Stein, J. , Shafqat, S. , Eskey, C. , Doherty, D. , Chang, Y. , Kurina, A. , and Furie, K. L. , 2001, “ Functional Recovery After Rehabilitation for Cerebellar Stroke,” Stroke, 32(2), pp. 530–534. [CrossRef] [PubMed]
Upchurch, G. R. , and Schaub, T. A. , 2006, “ Abdominal Aortic Aneurysm,” Am. Fam. Physician, 73(7), pp. 1198–1206. [PubMed]
Shaw, C.-M. , and Alvord, E. , 1972, “ Injury of the Basilar Artery Associated With Closed Head Trauma,” J. Neurol. Neurosurg. Psychiatry, 35(2), pp. 247–257. [CrossRef] [PubMed]
Claes, E. , Atienza, J. M. , Guinea, G. V. , Rojo, F. J. , Bernal, J. M. , Revuelta, J. M. , and Elices, M. , 2010, “ Mechanical Properties of Human Coronary Arteries,” Annual International Conference of the IEEE Engineering in Medicine and Biology (EMBC), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp. 3792–3795.
Holzapfel, G. A. , Sommer, G. , Gasser, C. T. , and Regitnig, P. , 2005, “ Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Heart Circ. Physiol., 289(5), pp. H2048–H2058. [CrossRef]
Pichamuthu, J. E. , Phillippi, J. A. , Cleary, D. A. , Chew, D. W. , Hempel, J. , Vorp, D. A. , and Gleason, T. G. , 2013, “ Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype,” Ann. Thorac. Surg., 96(6), pp. 2147–2154. [CrossRef] [PubMed]
Raghavan, M. L. , Webster, M. W. , and Vorp, D. A. , 1996, “ Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model,” Ann. Biomed. Eng., 24(5), pp. 573–582. [CrossRef] [PubMed]
Raghavan, M. L. , Hanaoka, M. M. , Kratzberg, J. A. , Higuchi, M. D. L. , and da Silva, E. S. , 2011, “ Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms,” J. Biomech., 44(13), pp. 2501–2507. [CrossRef] [PubMed]
Robertson, A. M. , Duan, X. , Aziz, K. M. , Hill, M. R. , Watkins, S. C. , and Cebral, J. R. , 2015, “ Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms,” Ann. Biomed. Eng., 43(7), pp. 1502–1515. [CrossRef] [PubMed]
Teng, Z. , Tang, D. , Zheng, J. , Woodard, P. K. , and Hoffman, A. H. , 2009, “ An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions,” J. Biomech., 42(15), pp. 2535–2539. [CrossRef] [PubMed]
Vorp, D. A. , Schiro, B. J. , Ehrlich, M. P. , Juvonen, T. S. , Ergin, M. A. , and Griffith, B. P. , 2003, “ Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta,” Ann. Thorac. Surg., 75(4), pp. 1210–1214. [CrossRef] [PubMed]
Ferrara, A. , Morganti, S. , Totaro, P. , Mazzola, A. , and Auricchio, F. , 2016, “ Human Dilated Ascending Aorta: Mechanical Characterization Via Uniaxial Tensile Tests,” J. Mech. Behav. Biomed. Mater., 53, pp. 257–271. [CrossRef] [PubMed]
Forsell, C. , Swedenborg, J. , Roy, J. , and Gasser, T. C. , 2013, “ The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach,” Ann. Biomed. Eng., 41(7), pp. 1554–1566. [CrossRef] [PubMed]
García-Herrera, C. M. , Atienza, J. M. , Rojo, F. J. , Claes, E. , Guinea, G. V. , Celentano, D. J. , García-Montero, C. , and Burgos, R. L. , 2012, “ Mechanical Behaviour and Rupture of Normal and Pathological Human Ascending Aortic Wall,” Med. Biol. Eng. Comput., 50(6), pp. 559–566. [CrossRef] [PubMed]
Mohan, D. , and Melvin, J. W. , 1982, “ Failure Properties of Passive Human Aortic Tissue. I—Uniaxial Tension Tests,” J. Biomech., 15(11), pp. 887–902. [CrossRef] [PubMed]
Okamoto, R. J. , Wagenseil, J. E. , DeLong, W. R. , Peterson, S. J. , Kouchoukos, N. T. , and Sundt, T. M. , 2002, “ Mechanical Properties of Dilated Human Ascending Aorta,” Ann. Biomed. Eng., 30(5), pp. 624–635. [CrossRef] [PubMed]
Korenczuk, C. E. , Votava, L. E. , Dhume, R. Y. , Kizilski, S. B. , Brown, G. E. , Narain, R. , and Barocas, V. H. , 2017, “ Isotropic Failure Criteria are Not Appropriate for Anisotropic Fibrous Biological Tissues,” ASME J. Biomech. Eng., 139(7), p. 071008. [CrossRef]
Stemper, B. D. , Yoganandan, N. , Stineman, M. R. , Gennarelli, T. A. , Baisden, J. L. , and Pintar, F. A. , 2007, “ Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue,” J. Surg. Res., 139(2), pp. 236–242. [CrossRef] [PubMed]
Shah, S. B. , Witzenburg, C. , Hadi, M. F. , Wagner, H. P. , Goodrich, J. M. , Alford, P. W. , and Barocas, V. H. , 2014, “ Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model,” ASME J. Biomech. Eng., 136(2), p. 021028. [CrossRef]
ASTM, 2006, “ Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers–Tension,” ASTM International, West Conshohoken, PA, Standard No. D412-06.
Fortunato, R. N. , Sang, C. , Robertson, A. M. , and Maiti, S. , 2017, “ Computational Study of Uniaxial Tension Testing,” Fifth International Conference on Computational and Mathematical Biomedical Engineering (CMBE), Pittsburgh, PA, Apr. 10–12, pp. 1304–1307.
Jacobs, N. T. , Cortes, D. H. , Vresilovic, E. J. , and Elliott, D. M. , 2013, “ Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy,” ASME J. Biomech. Eng., 135(2), p. 021004. [CrossRef]
Sun, W. , Sacks, M. S. , and Scott, M. J. , 2005, “ Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues,” ASME J. Biomech. Eng., 127(4), pp. 709–715. [CrossRef]
Hill, M. R. , Duan, X. , Gibson, G. A. , Watkins, S. , and Robertson, A. M. , 2012, “ A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall,” J. Biomech., 45(5), pp. 762–771. [CrossRef] [PubMed]
Nittur, P. G. , Maiti, S. , and Geubelle, P. H. , 2008, “ Grain-Level Analysis of Dynamic Fragmentation of Ceramics Under Multi-Axial Compression,” J. Mech. Phys. Solids, 56(3), pp. 993–1017. [CrossRef]
Monson, K. L. , Goldsmith, W. , Barbaro, N. M. , and Manley, G. T. , 2005, “ Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels,” J. Biomech., 38(4), pp. 737–744. [CrossRef] [PubMed]
Badel, P. , Avril, S. , Lessner, S. , and Sutton, M. , 2011, “ Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model,” Comput. Methods Biomech. Biomed. Eng., 15(1), pp. 37–48. [CrossRef]
Di Martino, E. S. , Bohra, A. , Vande Geest, J. P. , Gupta, N. , Makaroun, M. S. , and Vorp, D. A. , 2006, “ Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue,” J. Vasc. Surg., 43(3), pp. 570–576. [CrossRef] [PubMed]
Walsh, M. T. , Cunnane, E. M. , Mulvihill, J. J. , Akyildiz, A. C. , Gijsen, F. J. H. , and Holzapfel, G. A. , 2014, “ Uniaxial Tensile Testing Approaches for Characterisation of Atherosclerotic Plaques,” J. Biomech., 47(4), pp. 793–804. [CrossRef] [PubMed]
Wang, Y. , Ning, J. , Johnson, J. A. , Sutton, M. A. , and Lessner, S. M. , 2011, “ Development of a Quantitative Mechanical Test of Atherosclerotic Plaque Stability,” J. Biomech., 44(13), pp. 2439–2445. [CrossRef] [PubMed]
Peloquin, J. M. , Santare, M. H. , and Elliott, D. M. , 2017, “ Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure,” ASME J. Biomech. Eng., 138(2), p. 021002. [CrossRef]
Robertson, A. M. , Duan, X. , Maiti, S. , Thunes, J. R. , Gade, P. , Aziz, K. , Cebral, J. R. , Frösen, J. , Tulamo, R. , Fortunato, R. N. , Charbel, F. , and Amin-Hanjani, S. , 2017, “ Role of Calcification in Aneurysm Failure-a Case Study,” Fifth International Conference on Computational and Mathematical Biomedical Engineering (CMBE), Pittsburgh, PA, Apr. 10–12, pp. 52–55.
Mohan, D. , and Melvin, J. W. , 1983, “ Failure Properties of Passive Human Aortic Tissue—II: Biaxial Tension Tests,” J. Biomech., 16(1), pp. 39–44. [CrossRef]
Lacolley, P. , Challande, P. , Boumaza, S. , Boutouyrie, P. , Grimaud, J. , Paulin, D. , Lamaziere, J. D. , and Li, Z. , 2001, “ Mechanical Properties and Structure of Carotid Arteries in Mice Lacking Desmin,” Cardiovasc. Res., 51(1), pp. 178–187. [CrossRef] [PubMed]
Louis, H. , Kakou, A. , Regnault, V. , Labat, C. , Bressenot, A. , Gao-Li, J. , Gardner, H. , Thornton, S. N. , Challande, P. , Li, Z. , and Lacolley, P. , 2007, “ Role of α1β1-Integrin in Arterial Stiffness and Angiotensin-Induced Arterial Wall Hypertrophy in Mice,” Am. J. Physiol. Heart Circ. Physiol., 293(4), pp. H2597–H2604. [CrossRef] [PubMed]
Kim, J.-H. , Avril, S. , Duprey, A. , and Favre, J.-P. , 2012, “ Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique,” Biomech. Model. Mechanobiol., 11(6), pp. 841–853. [CrossRef] [PubMed]
Duprey, A. , Trabelsi, O. , Vola, M. , Favre, J. P. , and Avril, S. , 2016, “ Biaxial Rupture Properties of Ascending Thoracic Aortic Aneurysms,” Acta Biomater., 42, pp. 273–285. [CrossRef] [PubMed]
Bellini, C. , Kristofik, N. J. , Bersi, M. R. , Kyriakides, T. R. , and Humphrey, J. D. , 2017, “ A Hidden Structural Vulnerability in the Thrombospondin-2 Deficient Aorta Increases the Propensity to Intramural Delamination,” J. Mech. Behav. Biomed. Mater., 71, pp. 397–406. [CrossRef] [PubMed]
Romo, A. , Badel, P. , Duprey, A. , Favre, J. P. , and Avril, S. , 2014, “ In Vitro Analysis of Localized Aneurysm Rupture,” J. Biomech., 47(3), pp. 607–616. [CrossRef] [PubMed]
Stemper, B. D. , Yoganandan, N. , Sinson, G. P. , Gennarelli, T. A. , Stineman, M. R. , and Pintar, F. A. , 2007, “ Biomechanical Characterization of Internal Layer Subfailure in Blunt Arterial Injury,” Ann. Biomed. Eng., 35(2), pp. 285–291. [CrossRef] [PubMed]
Iliopoulos, D. C. , Deveja, R. P. , Kritharis, E. P. , Perrea, D. , Sionis, G. D. , Toutouzas, K. , Stefanadis, C. , and Sokolis, D. P. , 2009, “ Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms,” Med. Eng. Phys., 31(1), pp. 1–9. [CrossRef] [PubMed]
Cebral, J. R. , Duan, X. , Gade, P. S. , Chung, B. J. , Mut, F. , Aziz, K. , and Robertson, A. M. , 2016, “ Regional Mapping of Flow and Wall Characteristics of Intracranial Aneurysms,” Ann. Biomed. Eng., 44(12), pp. 3553–3567. [CrossRef] [PubMed]
Ng, B. H. , Chou, S. M. , and Krishna, V. , 2005, “ The Influence of Gripping Techniques on the Tensile Properties of Tendons,” Proc. Inst. Mech. Eng. Part H, 219(5), pp. 349–354. [CrossRef]
Nye, K. S. , Converse, M. I. , Dahl, M. J. , Albertine, K. H. , and Monson, K. L. , 2017, “ Development of Mechanical and Failure Properties in Sheep Cerebral Arteries,” Ann. Biomed. Eng., 45(4), pp. 1101–1110. [CrossRef] [PubMed]
Robertson, A. M. , Hill, M. R. , and Li, D. , 2012, “ Structurally Motivated Damage Models for Arterial Walls. Theory and Application,” Modelling of Physiological Flows, D. Ambrosi , A. Quarteroni , and G. Rozza , eds., Springer, Milano, Italy, pp. 143–185. [CrossRef]


Grahic Jump Location
Fig. 1

Sample preparation and experimental setup for failure testing: (a) Arterial segment, (b) Sample opened longitudinally with schematic of dogbone- and rectangular-shaped specimens, (c) Rectangular specimen, (d) Dogbone specimen, and (e) Custom mechanical testing system with: A—linear actuator, B—the load cell, C—metal clamping system, and D—CMOS camera. In (f) foam tape attached to underside of both grips on all four surfaces and (g) enlarged image of clamps showing grip region.

Grahic Jump Location
Fig. 2

Illustration of abrupt and gradual failure in mechanical loading curves. Shown are idealized loading curves to illustrate nature of abrupt failure and the three types of gradual failure (G-1, G-2, G-3).

Grahic Jump Location
Fig. 3

Failure process in sheep carotid artery specimens. Four levels of deformation during loading to failure are shown: Row 1: DB-FT for (a) #S2 and (b) #S7; Row 2: Rect-FT for samples (c) #S13 and (d) #S15; as well as Row 3: Rect-SP for (e) #S19 and (f) #S21. Location of crack that led to catastrophic failure is marked by a white arrowhead, where identifiable. Adventitial side of specimen is facing camera.

Grahic Jump Location
Fig. 4

Failure process in human basilar artery specimens. Four levels of deformation during loading to failure are shown. Row 1: DB-FT for (a) #H2 and (b) #H5; Row 2: Rect-FT for (c) #H8 and (d) #H11; as well as Row 3: Rect-SP for (e) #H14 and (f) #H17. Location of tear that led to catastrophic failure is marked by a white arrowhead or circled, where identifiable. Adventitial side of sample is facing camera.

Grahic Jump Location
Fig. 5

Middle failure consistently achieved in dogbone specimens with foam tape. Distribution of clamp versus middle failure for three test groups for (a) sheep carotid artery and (b) human basilar artery. No samples failed in the “transition” region.

Grahic Jump Location
Fig. 6

No significant difference in ultimate stress or strain for different testing methods. Row 1: Ultimate stress in (a) sheep carotid and (b) human basilar arteries: Row 2: Ultimate strain in (c) sheep carotid and (d) human basilar arteries. The bars show average ultimate failure stress and stretch with standard deviation.

Grahic Jump Location
Fig. 7

Failure process differs significantly between failure modes. (a) Distribution of abrupt and gradual failure are significantly different for three failure modes in ensemble of 39 samples of vascular tissue (p < 0.0001) and (b) cluster diagram showing distribution of samples into abrupt and gradual failure groups based on area under mechanical loading curve using the R factor.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In