Research Papers

Comparative Evaluation Between Anatomic and Nonanatomic Lateral Ligament Reconstruction Techniques in the Ankle Joint: A Computational Study

[+] Author and Article Information
Tserenchimed Purevsuren

Department of Mechanical Engineering,
Kyung Hee University,
Yongin 17104, South Korea
e-mail: Tserenchimed.p@gmail.com

Myagmarbayar Batbaatar

Department of Mechanical Engineering,
Kyung Hee University,
Yongin 17104, South Korea
e-mail: Miigaa1992@gmail.com

Batbayar Khuyagbaatar

Department of Mechanical Engineering,
Kyung Hee University,
Yongin 17104, South Korea
e-mail: kh.batbayar@gmail.com

Kyungsoo Kim

Department of Applied Mathematics,
Kyung Hee University,
Yongin 17104, South Korea
e-mail: kyungsoo@khu.ac.kr

Yoon Hyuk Kim

Department of Mechanical Engineering,
Kyung Hee University,
Yongin 17104, South Korea
e-mail: yoonhkim@khu.ac.kr

1Corresponding author.

Manuscript received September 30, 2017; final manuscript received February 12, 2018; published online April 4, 2018. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 140(6), 061009 (Apr 04, 2018) (8 pages) Paper No: BIO-17-1441; doi: 10.1115/1.4039576 History: Received September 30, 2017; Revised February 12, 2018

Biomechanical studies have indicated that the conventional nonanatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis (OA). Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments (CaFL) have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular nonanatomic reconstruction techniques. An LAS injury, three popular nonanatomic reconstruction models (Watson-Jones, Evans, and Chrisman–Snook) and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 N·m inversion moment), internal rotational test (3 N·m internal rotation moment), and the combined loading test (9 N·m inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the nonanatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which is mainly observed in Watson-Jones and Chrisman–Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Fong, D. T. , Hong, Y. , Chan, L. K. , Yung, P. S. H. , and Chan, K. M. , 2007, “ A Systematic Review on Ankle Injury and Ankle Sprain in Sports,” Sports Med., 37(1), pp. 73–94. [CrossRef] [PubMed]
Waterman, B. R. , Belmont , P. J., Jr. , Cameron, K. L. , Svoboda, S. J. , Alitz, C. J. , and Owens, B. D. , 2011, “ Risk Factors for Syndesmotic and Medial Ankle Sprain: Role of Sex, Sport, and Level of Competition,” Am. J. Sports Med., 39(5), pp. 992–998. [CrossRef] [PubMed]
Barker, H. B. , Beynnon, B. D. , and Renström, P. A. , 1997, “ Ankle Injury Risk Factors in Sports,” Sports Med., 23(2), pp. 69–74. [CrossRef] [PubMed]
Kobayashi, T. , and Gamada, K. , 2014, “ Lateral Ankle Sprain and Chronic Ankle Instability: A Critical Review,” Foot Ankle Spec., 7(4), pp. 298–326. [CrossRef] [PubMed]
Yde, J. , and Nielsen, A. B. , 1990, “ Sports Injuries in Adolescents' Ball Games: Soccer, Handball and Basketball,” Br. J. Sports Med., 24(1), pp. 51–54. [CrossRef] [PubMed]
Yeung, M. S. , Chan, K. M. , So, C. H. , and Yuan, W. Y. , 1994, “ An Epidemiological Survey on Ankle Sprain,” Br. J. Sports Med., 28(2), pp. 112–116. [CrossRef] [PubMed]
Taga, I. , Shino, K. , Inoue, M. , Nakata, K. , and Maeda, A. , 1993, “ Articular Cartilage Lesions in Ankles With Lateral Ligament Injury. An Arthroscopic Study,” Am. J. Sports Med., 21(1), pp. 120–127. [CrossRef] [PubMed]
Harrington, T. , Crichton, K. J. , and Anderson, I. F. , 1993, “ Overuse Ballet Injury of the Base of the Second Metatarsal: A Diagnostic Problem,” Am. J. Sports Med., 21(4), pp. 591–598. [CrossRef] [PubMed]
Broström, L. , 1966, “ Sprained Ankles. V. Treatment and Prognosis in Recent Ligament Ruptures,” Acta. Chir. Scand., 132(5), pp. 537–550. [PubMed]
Colville, M. R. , Marder, R. A. , and Zarins, B. , 1992, “ Reconstruction of the Lateral Ankle Ligaments a Biomechanical Analysis,” Am. J. Sports Med., 20(5), pp. 594–600. [CrossRef] [PubMed]
Galhoum, A. E. , Wiewiorski, M. , and Valderrabano, V. , 2017, “ Ankle Instability: Anatomy, Mechanics, Management and Sequelae,” Sports Orthop. Traumatol., 33(1), pp. 47–56. [CrossRef]
Watson-Jones, R. , 1941, Fractures and Other Bone and Joint Injuries, Williams and Wilkins, Baltimore, MD.
Evans, D. L. , 1953, “ Recurrent Instability of the Ankle—A Method of Surgical Treatment,” Proc. R. Soc. Med., 46(5), pp. 343–344. [PubMed]
Chrisman, O. D. , and Snook, G. A. , 1969, “ Reconstruction of Lateral Ligament Tears of the Ankle,” J. Bone Jt. Surg. Am., 51(5), pp. 904–912. [CrossRef]
DiGiovanni, C. W. , and Brodsky, A. , 2006, “ Current Concepts: Lateral Ankle Instability,” Foot Ankle Int., 27(10), pp. 854–866. [CrossRef] [PubMed]
Saltzman, C. L. , Salamon, M. L. , Blanchard, G. M. , Huff, T. , Hayes, A. , Buckwalter, J. A. , and Amendola, A. , 2005, “ Epidemiology of Ankle Arthritis: Report of a Consecutive Series of 639 Patients From a Tertiary Orthopaedic Center,” Iowa Orthop. J., 25, pp. 44–46. [PubMed]
Krips, R. , van Dijk, C. N. , Halasi, T. , Lehtonen, H. , Corradini, C. , Moyen, B. , and Karlsson, J. , 2001, “ Long-Term Outcome of Anatomical Reconstruction versus Tenodesis for the Treatment of Chronic Anterolateral Instability of the Ankle Joint: A Multicenter Study,” Foot Ankle Int., 22(5), pp. 415–421. [CrossRef] [PubMed]
Hennrikus, W. L. , Mapes, R. C. , Lyons, P. M. , and Lapoint, J. M. , 1996, “ Outcomes of the Chrisman-Snook and Modified-Broström Procedures for Chronic Lateral Ankle Instability: A Prospective, Randomized Comparison,” Am. J. Sports Med., 24(4), pp. 400–404. [CrossRef] [PubMed]
Bahr, R. , Pena, F. , Shine, J. , Lew, W. D. , Tyrdal, S. , and Engebretsen, L. , 1997, “ Biomechanics of Ankle Ligament Reconstruction an In Vivo Comparison of the Broström Repair, Watson-Jones Reconstruction, and a New Anatomic Reconstruction Technique,” Am. J. Sports Med., 25(4), pp. 424–432. [CrossRef] [PubMed]
Liu, S. H. , and Baker, C. L. , 1994, “ Comparison of Lateral Ankle Ligamentous Reconstruction Procedures,” Am. J. Sports Med., 22(3), pp. 313–317. [CrossRef] [PubMed]
Marcus Hollis, J. , Dale Blasier, R. , Flahiff, C. M. , and Hofmann, O. E. , 1995, “ Biomechanical Comparison of Reconstruction Techniques in Simulated Lateral Ankle Ligament Injury,” Am. J. Sports Med., 23(6), pp. 678–682. [CrossRef] [PubMed]
Zhang, M. Y. , Xu, C. , and Li, K. H. , 2011, “ Finite Element Analysis of Nonanatomic Tenodesis Reconstruction Methods of Combined Anterior Talofibular Ligament and Calcaneofibular Ligament Deficiency,” Foot Ankle Int., 32(10), pp. 1000–1008. [CrossRef] [PubMed]
Ahn, J. H. , Choy, W. S. , and Kim, H. Y. , 2011, “ Reconstruction of the Lateral Ankle Ligament With a Long Extensor Tendon Graft of the Fourth Toe,” Am. J. Sports Med., 39(3), pp. 637–644. [CrossRef] [PubMed]
Budny, A. M. , and Schuberth, J. M. , 2012, “ Autologous Split Peroneus Longus Lateral Ankle Stabilization,” J. Foot Ankle Surg., 51(5), pp. 588–592. [CrossRef] [PubMed]
Ellis, S. J. , Williams, B. R. , Pavlov, H. , and Deland, J. , 2011, “ Results of Anatomic Lateral Ankle Ligament Reconstruction With Tendon Allograft,” HSS J., 7(2), p. 134. [CrossRef] [PubMed]
Guillo, S. , Archbold, P. , Perera, A. , Bauer, T. , and Sonnery-Cottet, B. , 2014, “ Arthroscopic Anatomic Reconstruction of the Lateral Ligaments of the Ankle With Gracilis Autograft,” Arthrosc. Tech., 3(5), pp. 593–598. [CrossRef]
Ibrahim, S. A. , Hamido, F. , Al Misfer, A. K. , Ghafar, S. A. , Awad, A. , Salem, H. K. , Alhran, H. , and Khirait, S. , 2011, “ Anatomical Reconstruction of the Lateral Ligaments Using Gracillis Tendon in Chronic Ankle Instability; a New Technique,” Foot Ankle Surg., 17(4), pp. 239–246. [CrossRef] [PubMed]
Jung, H. G. , Shin, M. H. , Park, J. T. , Eom, J. S. , Lee, D. O. , and Lee, S. H. , 2015, “ Anatomical Reconstruction of Lateral Ankle Ligaments Using Free Tendon Allografts and Biotenodesis Screws,” Foot Ankle Int., 36(9), pp. 1064–1071. [CrossRef] [PubMed]
Kim, H. N. , Jeon, J. Y. , Dong, Q. , Noh, K. C. , Chung, K. J. , Kim, H. K. , Hwang, J. H. , and Park, Y. W. , 2015, “ Lateral Ankle Ligament Reconstruction Using the Anterior Half of the Peroneus Longus Tendon,” Knee Surg. Sports Traumatol. Arthrosc., 23(6), pp. 1877–1885. [CrossRef] [PubMed]
Nakata, K. , Shino, K. , Horibe, S. , Natsu-ume, T. , Mae, T. , and Ochi, T. , 2000, “ Reconstruction of the Lateral Ligaments of the Ankle Using Solvent-Dried and Gamma-Irradiated Allogeneic Fascia Lata,” Bone Jt. J., 82(4), pp. 579–582. [CrossRef]
Sha, Y. , Wang, H. , Ding, J. , Tang, H. , Li, C. , Luo, H. , Lui, J. , and Xu, Y. , 2016, “ A Novel Patient-Specific Navigational Template for Anatomical Reconstruction of the Lateral Ankle Ligaments,” Int. Orthop., 40(1), pp. 59–64. [CrossRef] [PubMed]
Sugimoto, K. , Takakura, Y. , Kumai, T. , Iwai, M. , and Tanaka, Y. , 2002, “ Reconstruction of the Lateral Ankle Ligaments With Bone-Patellar Tendon Graft in Patients With Chronic Ankle Instability a Preliminary Report,” Am. J. Sports Med., 30(3), pp. 340–346. [CrossRef] [PubMed]
Takao, M. , Oae, K. , Uchio, Y. , Ochi, M. , and Yamamoto, H. , 2005, “ Anatomical Reconstruction of the Lateral Ligaments of the Ankle With a Gracilis Autograft a New Technique Using an Interference Fit Anchoring System,” Am. J. Sports Med., 33(6), pp. 814–823. [CrossRef] [PubMed]
Purevsuren, T. , Batbaatar, M. , Kim, K. , Park, W. M. , Jang, S. H. , and Kim, Y. H. , 2017, “ Investigation of Ligament Strains in Lateral Ankle Sprain Using Computational Simulation of Accidental Injury Cases,” J. Mech. Sci. Technol., 31(7), pp. 3627–3632.
Button, K. D. , Wei, F. , Meyer, E. G. , and Haut, R. C. , 2013, “ Specimen-Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting,” ASME J. Biomech. Eng., 135(4), p. 041001. [CrossRef]
Iaquinto, J. M. , and Wayne, J. S. , 2010, “ Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability,” ASME J. Biomech. Eng., 132(2), p. 021009. [CrossRef]
Liacouras, P. C. , and Wayne, J. S. , 2007, “ Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies,” ASME J. Biomech. Eng., 129(6), pp. 811–817. [CrossRef]
Wei, F. , Braman, J. E. , Weaver, B. T. , and Haut, R. C. , 2011, “ Determination of Dynamic Ankle Ligament Strains From a Computational Model Driven by Motion Analysis Based Kinematic Data,” J. Biomech., 44(15), pp. 2636–2641. [CrossRef] [PubMed]
Wei, F. , Fong, D. T. , Chan, K. M. , and Haut, R. C. , 2015, “ Estimation of Ligament Strains and Joint Moments in the Ankle During a Supination Sprain Injury,” Comput. Methods Biomech. Biomed. Eng., 18(3), pp. 243–248. [CrossRef]
Wei, F. , Hunley, S. C. , Powell, J. W. , and Haut, R. C. , 2010, “ Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation,” Ann. Biomed. Eng., 39(2), pp. 756–765. [CrossRef] [PubMed]
Netter, F. H. , 2014, Atlas of Human Anatomy, Saunders, Philadelphia, PA.
Rohen, J. W. , Yokochi, C. , and Lütjen-Drecoll, E. , 2006, Color Atlas of Anatomy: A Photographic Study of the Human Body, Schattauer Verlag, Stuttgart, Germany.
Bohnsack, M. , Sürie, B. , Kirsch, L. , and Wülker, N. , 2002, “ Biomechanical Properties of Commonly Used Autogenous Transplants in the Surgical Treatment of Chronic Lateral Ankle Instability,” Foot Ankle Int., 23(7), pp. 661–664. [CrossRef] [PubMed]
Rahman, M. , Cil, A. , and Stylianou, A. P. , 2016, “ Prediction of Elbow Joint Contact Mechanics in the Multibody Framework,” Med. Eng. Phys., 38(3), pp. 257–266. [CrossRef] [PubMed]
Kia, M. , Schafer, K. , Lipman, J. , Cross, M. , Mayman, D. , Pearle, A. , Wickiewicz, T. , and Imhauser, C. , 2016, “ A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion,” ASME J. Biomech. Eng., 138(5), p. 051010. [CrossRef]
Kerkhoffs, G. M. , Struijs, P. A. , Marti, R. K. , Assendelft, W. J. , Blankevoort, L. , and Van Dijk, C. N. , 2002, “ Different Functional Treatment Strategies for Acute Lateral Ankle Ligament Injuries in Adults,” Cochrane Database Syst. Rev., 3(3), p. CD002938.
Hubbard, T. J. , and Hertel, J. , “ Mechanical Contributions to Chronic Lateral Ankle Instability,” Sports Med., 36(3), pp. 263–277. [CrossRef] [PubMed]
Kovaleski, J. E. , Heitman, R. J. , Gurchiek, L. R. , Hollis, J. M. , Liu, W. , and Pearsall, A. W., IV , 2014, “ Joint Stability Characteristics of the Ankle Complex after Lateral Ligamentous Injury—Part I: A Laboratory Comparison Using Arthrometric Measurement,” J. Athl. Train., 49(2), pp. 192–197. [CrossRef] [PubMed]
Wu, G. , Siegler, S. , Allard, P. , Kirtley, C. , Leardini, A. , Rosenbaum, D. , Whittle, M. , DâLima, D. D. , Cristofolini, L. , Witte, H. , and Schmid, O. , 2002, “ ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine,” J. Biomech., 35(4), pp. 543–548. [CrossRef] [PubMed]
Funk, J. R. , Hall, G. W. , Crandall, J. R. , and Pilkey, W. D. , 2000, “ Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments,” ASME J. Biomech. Eng., 122(1), p. 15–22. [CrossRef]


Grahic Jump Location
Fig. 1

A three-dimensional multibody dynamic model of the human ankle joint and models with commonly used surgical techniques: A—intact ankle model, B—ATaFL and CaFL cut model, C—model with Watson-Jones reconstruction technique, D—model with Evans reconstruction technique, E—model with Chrisman–Snook reconstruction technique, F—model with anatomic-1 reconstruction technique, G—model with anatomic-2 reconstruction technique, H—modeling of the curved path to mimic graft motion within the tunnel by using a system consisted of massless spheres and stiff springs. The gray and black lines in the reconstruction models indicated the reconstruction grafts inside and outside of the fibular tunnel, respectively.

Grahic Jump Location
Fig. 2

Directions of loading and axes of rotation. An anterior force in the anterior drawer test and a compressive force in the complex loading test were applied as concentrated force to thecalcaneus along respective axes. The tibia was fixed on the ground and the other bones were free to move except for prescribed foot flexion.

Grahic Jump Location
Fig. 3

Anterior drawer test under a 150 N anterior force: (a) talus translation relative to the tibia along the inversion axis and (b) subtalar translation as quantified by subtracting talus anterior translation relative to the tibia from total calcaneus translation relative to the tibia. The error bars indicate the range of values obtained from the previous experimental studies [10,17,19,48].

Grahic Jump Location
Fig. 4

Inversion test under a 3 N·m inversion moment: (a) talus inversion angle relative to the tibia on the inversion axis and (b) subtalar rotation angle quantified by subtracting talus inversion relative to the tibia from total calcaneus inversion relative to the tibia. The error bars indicate the range of values obtained from the previous experimental studies [10,17,19,48].

Grahic Jump Location
Fig. 5

Internal rotation test under a 3 N·m internal rotation moment. Talus internal rotation angle relative to the tibia on the internal rotation axis. The error bars indicate the range of values obtained from the previous experimental study [10].

Grahic Jump Location
Fig. 6

Complex high loading test under a 9 N·m inversion moment, a 9 N·m internal rotation moment, and a 1800 N ground reaction force: (a) talus inversion angle relative to the tibia on the inversion axis, (b) talus internal rotation angle relative to the tibia on the internal rotation axis, and (c) subtalar rotation angle as measured by calcaneus inversion relative to the talus. The result of the LAS injury model (ATaFL and CaFL cut) was not considered because the injury model could not resist high loading under complex loading test.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In