0
Research Papers

The Role of Protein Loss and Denaturation in Determining Outcomes of Heating, Cryotherapy, and Irreversible Electroporation on Cardiomyocytes

[+] Author and Article Information
Feng Liu

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: liux3176@umn.edu

Priyatanu Roy

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: royxx299@umn.edu

Qi Shao

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455;
Institute for Engineering in Medicine,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: shaox070@umn.edu

Chunlan Jiang

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: jiang240@umn.edu

Jeunghwan Choi

Department of Mechanical Engineering,
University of Minnesota,
Slay Hall, Library Drive,
Greenville, NC 27858;
Department of Engineering,
East Carolina University,
Slay Hall, Library Drive,
Greenville, NC 27858
e-mail: choijo14@ecu.edu

Connie Chung

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: chung301@umn.edu

Dushyant Mehra

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455
e-mail: mehr0096@umn.edu

John C. Bischof

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455;
Institute for Engineering in Medicine,
University of Minnesota,
111 Church Street SE,
Minneapolis, MN 55455;
Department of Biomedical Engineering,
University of Minnesota,
Nils Hasselmo Hall,
312 Church St. SE,
Minneapolis, MN 55455
e-mail: bischof@umn.edu

1F. Liu and P. Roy contributed equally to this work.

2Corresponding author.

Manuscript received May 25, 2017; final manuscript received January 10, 2018; published online April 2, 2018. Assoc. Editor: Guy M. Genin.

J Biomech Eng 140(6), 061007 (Apr 02, 2018) (9 pages) Paper No: BIO-17-1226; doi: 10.1115/1.4039375 History: Received May 25, 2017; Revised January 10, 2018

Atrial fibrillation (AF) currently affects millions of people in the U.S. alone. Focal therapy is an increasingly attractive treatment for AF that avoids the debilitating effects of drugs for disease control. Perhaps the most widely used focal therapy for AF is heat-based radiofrequency (heating), although cryotherapy (cryo) is rapidly replacing it due to a reduction in side effects and positive clinical outcomes. A third focal therapy, irreversible electroporation (IRE), is also being considered in some settings. This study was designed to help guide treatment thresholds and compare mechanism of action across heating, cryo, and IRE. Testing was undertaken on HL-1 cells, a well-established cardiomyocyte cell line, to assess injury thresholds for each treatment method. Cell viability, as assessed by Hoechst and propidium iodide (PI) staining, was found to be minimal after exposure to temperatures ≤−40 °C (cryo), ≥60 °C (heating), and when field strengths ≥1500 V/cm (IRE) were used. Viability was then correlated to protein denaturation fraction (PDF) as assessed by Fourier transform infrared (FTIR) spectroscopy, and protein loss fraction (PLF) as assessed by bicinchoninic acid (BCA) assay after the three treatments. These protein changes were assessed both in the supernatant and the pellet of cell suspensions post-treatment. We found that dramatic viability loss (≥50%) correlated strongly with ≥12% protein change (PLF, PDF or a combination of the two) in every focal treatment. These studies help in defining both cellular thresholds and protein-based mechanisms of action that can be used to improve focal therapy application for AF.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Morin, D. P. , Bernard, M. L. , Madias, C. , Rogers, P. A. , Thihalolipavan, S. , and Estes, N. A. M., III , 2016, “ The State of the Art: Atrial Fibrillation Epidemiology, Prevention, and Treatment,” Mayo Clin. Proc., 91(12), pp. 1778–1810. [CrossRef] [PubMed]
Haïssaguerre, M. , Jaïs, P. , Shah, D. C. , Takahashi, A. , Hocini, M. , Quiniou, G. , Garrigue, S. , Le Mouroux, A. , Le Métayer, P. , and Clémenty, J. , 2009, “ Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins,” N. Engl. J. Med., 339(10), pp. 659–666. [CrossRef]
Waks, J. W. , and Zimetbaum, P. , 2017, “ Antiarrhythmic Drug Therapy for Rhythm Control in Atrial Fibrillation,” J. Cardiovasc. Pharmacol. Ther., 22(1), pp. 3–19. [CrossRef]
Padfield, G. J. , Steinberg, C. , Swampillai, J. , Qian, H. , Connolly, S. J. , Dorian, P. , Green, M. S. , Humphries, K. H. , Klein, G. J. , Sheldon, R. , Talajic, M. , and Kerr, C. R. , 2017, “ Progression of Paroxysmal to Persistent Atrial Fibrillation: 10-Year Follow-Up in the Canadian Registry of Atrial Fibrillation,” Heart Rhythm, 14(6), pp. 801–807. [CrossRef] [PubMed]
Noheria, A. , Kumar, A. , Wylie, J. V. , and Josephson, M. E. , 2008, “ Catheter Ablation Vs Antiarrhythmic Drug Therapy for Atrial Fibrillation,” Arch. Intern. Med., 168(6), pp. 581–586. [CrossRef] [PubMed]
Ganesan, A. N. , Shipp, N. J. , Brooks, A. G. , Kuklik, P. , Lau, D. H. , Lim, H. S. , Sullivan, T. , Roberts-Thomson, K. C. , and Sanders, P. , 2013, “ Long-Term Outcomes of Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis,” J. Am. Heart Assoc., 2(2), p. e004549. [CrossRef] [PubMed]
Khan, A. R. , Khan, S. , Sheikh, M. A. , Khuder, S. , Grubb, B. , and Moukarbel, G. V. , 2014, “ Catheter Ablation and Antiarrhythmic Drug Therapy as First- or Second-Line Therapy in the Management of Atrial Fibrillation: Systematic Review and Meta-Analysis,” Circ. Arrhythmia Electrophysiol., 7(5), pp. 853–860. [CrossRef]
Hakalahti, A. , Biancari, F. , Nielsen, J. C. , and Raatikainen, M. J. P. , 2015, “ Radiofrequency Ablation Vs. Antiarrhythmic Drug Therapy as First Line Treatment of Symptomatic Atrial Fibrillation: Systematic Review and Meta-Analysis,” Europace, 17(3), pp. 370–378. [CrossRef] [PubMed]
Calkins, H. , Kuck, K. H. , Cappato, R. , Brugada, J. , John Camm, A. , Chen, S. A. , Crijns, H. J. G. , Damiano, R. J. , Davies, D. W. , DiMarco, J. , Edgerton, J. , Ellenbogen, K. , Ezekowitz, M. D. , Haines, D. E. , Haissaguerre, M. , Hindricks, G. , Iesaka, Y. , Jackman, W. , Jalife, J. , Jais, P. , Kalman, J. , Keane, D. , Kim, Y. H. , Kirchhof, P. , Klein, G. , Kottkamp, H. , Kumagai, K. , Lindsay, B. D. , Mansour, M. , Marchlinski, F. E. , McCarthy, P. M. , Mont, J. L. , Morady, F. , Nademanee, K. , Nakagawa, H. , Natale, A. , Nattel, S. , Packer, D. L. , Pappone, C. , Prystowsky, E. , Raviele, A. , Reddy, V. , Ruskin, J. N. , Shemin, R. J. , Tsao, H. M. , and Wilber, D. , 2012, “ HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-Up, Definitions, Endpoints, and Research Trial Design,” J. Interventional Card. Electrophysiol., 33(2), pp. 171–257. [CrossRef]
Schmidt, M. , Dorwarth, U. , Andresen, D. , Brachmann, J. , Kuck, K. , Kuniss, M. , Willems, S. , Deneke, T. , Tebbenjohanns, J. , Gerds-Li, J. H. , Spitzer, S. , Senges, J. , Hochadel, M. , and Hoffmann, E. , 2016, “ German Ablation Registry: Cryoballoon Vs Radiofrequency Ablation in Paroxysmal Atrial Fibrillation—One-Year Outcome Data,” Heart Rhythm, 13(4), pp. 836–844. [CrossRef] [PubMed]
Bassiouny, M. , Saliba, W. , Hussein, A. , Rickard, J. , Diab, M. , Aman, W. , Dresing, T. , Callahan, T. , Bhargava, M. , Martin, D. O. , Shao, M. , Baranowski, B. , Tarakji, K. , Tchou, P. J. , Hakim, A. , Kanj, M. , Lindsay, B. , and Wazni, O. , 2016, “ Randomized Study of Persistent Atrial Fibrillation Ablation: Ablate in Sinus Rhythm Versus Ablate Complex-Fractionated Atrial Electrograms in Atrial Fibrillation,” Circ. Arrhythmia Electrophysiol., 9(2), p. e003596. [CrossRef]
Madhavan, M. , Venkatachalam, K. L. , Swale, M. J. , Desimone, C. V. , Gard, J. J. , Johnson, S. B. , Suddendorf, S. H. , Mikell, S. B. , Ladewig, D. J. , Nosbush, T. G. , Danielsen, A. J. , Knudson, M. , and Asirvatham, S. J. , 2016, “ Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pacing Clin. Electrophysiol., 39(5), pp. 407–417. [CrossRef] [PubMed]
Van Driel, V. J. H. M. , Neven, K. G. E. J. , Van Wessel, H. , Du Pré, B. C. , Vink, A. , Doevendans, P. A. F. M. , and Wittkampf, F. H. M. , 2014, “ Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ. Arrhythmia Electrophysiol., 7(4), pp. 734–738. [CrossRef]
Neven, K. , Van Driel, V. , Van Wessel, H. , Van Es, R. , Doevendans, P. A. , and Wittkampf, F. , 2014, “ Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ. Arrhythmia Electrophysiol., 7(4), pp. 728–733. [CrossRef]
Lavee, J. , Onik, G. , Mikus, P. , and Rubinsky, B. , 2007, “ A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” Heart Surg. Forum, 10(2), pp. 96–101. [CrossRef]
Linhart, M. , Bellmann, B. , Mittmann-Braun, E. , Schrickel, J. W. , Bitzen, A. , AndriÉ, R. , Yang, A. , Nickenig, G. , Lickfett, L. , and Lewalter, T. , 2009, “ Comparison of Cryoballoon and Radiofrequency Ablation of Pulmonary Veins in 40 Patients With Paroxysmal Atrial Fibrillation: A Case-Control Study,” J. Cardiovasc. Electrophysiol., 20(12), pp. 1343–1348. [CrossRef] [PubMed]
Curley, S. A. , Izzo, F. , Delrio, P. , Ellis, L. M. , Granchi, J. , Vallone, P. , Fiore, F. , Pignata, S. , Daniele, B. , and Cremona, F. , 1999, “ Radiofrequency Ablation of Unresectable Primary and Metastatic Hepatic Malignancies: Results in 123 Patients,” Ann. Surg., 230(1), pp. 1–8. [CrossRef] [PubMed]
Nikfarjam, M. , Muralidharan, V. , and Christophi, C. , 2005, “ Mechanisms of Focal Heat Destruction of Liver Tumors,” J. Surg. Res., 127(2), pp. 208–223. [CrossRef] [PubMed]
Chu, K. F. , and Dupuy, D. E. , 2014, “ Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy,” Nat. Rev. Cancer, 14(3), pp. 199–208. [CrossRef] [PubMed]
Diederich, C. J. , 2005, “ Thermal Ablation and High-Temperature Thermal Therapy: Overview of Technology and Clinical Implementation,” Int. J. Hyperthermia, 21(8), pp. 745–753. [CrossRef] [PubMed]
Qin, Z. , Balasubramanian, S. K. , Wolkers, W. F. , Pearce, J. A. , and Bischof, J. C. , 2014, “ Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells,” Ann. Biomed. Eng., 42(12), pp. 2392–2404. [CrossRef] [PubMed]
Palanivel, R. , Eguchi, M. , Shuralyova, I. , Coe, I. , and Sweeney, G. , 2006, “ Distinct Effects of Short- and Long-Term Leptin Treatment on Glucose and Fatty Acid Uptake and Metabolism in HL-1 Cardiomyocytes,” Metabolism, 55(8), pp. 1067–1075. [CrossRef] [PubMed]
Gage, A. A. , and Baust, J. , 1998, “ Mechanisms of Tissue Injury in Cryosurgery,” Cryobiology, 37(3), pp. 171–186. [CrossRef] [PubMed]
Mazur, P. , 1984, “ Freezing of Living Cells: Mechanisms and Implications,” Am. J. Physiol., 247(3), pp. C125–C142. [CrossRef] [PubMed]
Smith, D. J. , Fahssi, W. M. , Swanlund, D. J. , and Bischof, J. C. , 1999, “ A Parametric Study of Freezing Injury in AT-1 Rat Prostate Tumor Cells,” Cryobiology, 39(1), pp. 13–28. [CrossRef] [PubMed]
Hoffmann, N. E. , and Bischof, J. C. , 2002, “ The Cryobiology of Cryosurgical Injury,” Urology, 60(2), pp. 40–49. [CrossRef] [PubMed]
Jiang, C. , Davalos, R. , and Bischof, J. , 2015, “ A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy,” IEEE Trans. Biomed. Eng., 62(1), pp. 4–20. [CrossRef] [PubMed]
Lee, E. W. , Wong, D. , Prikhodko, S. V. , Perez, A. , Tran, C. , Loh, C. T. , and Kee, S. T. , 2012, “ Electron Microscopic Demonstration and Evaluation of Irreversible Electroporation-Induced Nanopores on Hepatocyte Membranes,” J. Vasc. Interventional Radiol., 23(1), pp. 107–113. [CrossRef]
Chen, W. , 2005, “ Electroconformational Denaturation of Membrane Proteins,” Ann. N. Y. Acad. Sci., 1066, pp. 92–105. [CrossRef] [PubMed]
Frandsen, S. K. , Gissel, H. , Hojman, P. , Tramm, T. , Eriksen, J. , and Gehl, J. , 2012, “ Direct Therapeutic Applications of Calcium Electroporation to Effectively Induce Tumor Necrosis,” Cancer Res., 72(6), pp. 1336–1341. [CrossRef] [PubMed]
Lee, R. C. , Zhang, D. , and Hannig, J. , 2000, “ Biophysical Injury Mechanisms in Electrical Shock Trauma,” Annu. Rev. Biomed. Eng., 2(1), pp. 477–509. [CrossRef] [PubMed]
Edinger, A. L. , and Thompson, C. B. , 2004, “ Death by Design: Apoptosis, Necrosis and Autophagy,” Curr. Opin. Cell Biol., 16(6), pp. 663–669. [CrossRef] [PubMed]
Elvan, A. , Huang, X. , Pressler, M. L. , and Zipes, D. P. , 1997, “ Radiofrequency Catheter Ablation of the Atria Eliminates Pacing-Induced Sustained Atrial Fibrillation and Reduces Connexin 43 in Dogs,” Circulation, 96(5), pp. 1675–1685. [CrossRef] [PubMed]
Canon, S. , Caballero, R. , Herraiz-Martinez, A. , Perez-Hernandez, M. , Lopez, B. , Atienza, F. , Jalife, J. , Hove-Madsen, L. , Delpon, E. , and Bernad, A. , 2016, “ miR-208b Upregulation Interferes With Calcium Handling in HL-1 Atrial Myocytes: Implications in Human Chronic Atrial Fibrillation,” J. Mol. Cell. Cardiol., 99, pp. 162–173. [CrossRef] [PubMed]
Claycomb, W. C. , Lanson, N. A. , Stallworth, B. S. , Egeland, D. B. , Delcarpio, J. B. , Bahinski, A. , and Izzo, N. J. , 1998, “ HL-1 Cells: A Cardiac Muscle Cell Line That Contracts and Retains Phenotypic Characteristics of the Adult Cardiomyocyte,” Proc. Natl. Acad. Sci. U. S. A., 95(6), pp. 2979–2984. [CrossRef] [PubMed]
Yang, Z. , and Murray, K. T. , 2011, “ Ionic Mechanisms of Pacemaker Activity in Spontaneously-Contracting Atrial HL-1 Cells,” J. Cardiovasc. Pharmacol., 57(1), pp. 28–36. [CrossRef] [PubMed]
Yang, Z. , Shen, W. , Rottman, J. N. , Wikswo, J. P. , and Murray, K. T. , 2005, “ Rapid Stimulation Causes Electrical Remodeling in Cultured Atrial Myocytes,” J. Mol. Cell. Cardiol., 38(2), pp. 299–308. [CrossRef] [PubMed]
Mace, L. C. , Yermalitskaya, L. V. , Yi, Y. , Yang, Z. , and Murray, K. T. , 2009, “ Transcriptional Remodeling of Rapidly Stimulated HL-1 Atrial Myocytes Exhibits Concordance With Human Atrial Fibrillation,” J. Mol. Cell. Cardiol., 47(4), pp. 485–492. [CrossRef] [PubMed]
Choi, J. , and Bischof, J. C. , 2011, “ Cooling Rate Dependent Biophysical and Viability Response Shift With Attachment State in Human Dermal Fibroblast Cells,” Cryobiology, 63(3), pp. 285–291. [CrossRef] [PubMed]
Choi, J. , and Bischof, J. , 2017, “ Thermal Thresholds of Cardiovascular HL-1 Cell Destruction by Cryothermal Exposure,” Cryobiology, 78, pp. 115–118. [CrossRef] [PubMed]
He, X. , Wolkers, W. F. , Crowe, J. H. , Swanlund, D. J. , and Bischof, J. C. , 2004, “ In Situ Thermal Denaturation of Proteins in Dunning AT-1 Prostate Cancer Cells: Implication for Hyperthermic Cell Injury,” Ann. Biomed. Eng., 32(10), pp. 1384–1398. [CrossRef] [PubMed]
Jiang, C. , Qin, Z. , and Bischof, J. , 2014, “ Membrane-Targeting Approaches for Enhanced Cancer Cell Destruction With Irreversible Electroporation,” Ann. Biomed. Eng., 42(1), pp. 193–204. [CrossRef] [PubMed]
Kong, J. , and Yu, S. , 2007, “ Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures,” Acta Biochim. Biophys. Sin., 39(8), pp. 549–559. [CrossRef]
Shah, N. B. , Wolkers, W. F. , Morrissey, M. , Sun, W. Q. , and Bischof, J. C. , 2009, “ Fourier Transform Infrared Spectroscopy Investigation of Native Tissue Matrix Modifications Using a Gamma Irradiation Process,” Tissue Eng., Part C, 15(1), pp. 33–40. [CrossRef]
Wolkers, W. F. , Balasubramanian, S. K. , Ongstad, E. L. , Zec, H. C. , and Bischof, J. C. , 2007, “ Effects of Freezing on Membranes and Proteins in LNCaP Prostate Tumor Cells,” Biochim. Biophys. Acta, 1768(3), pp. 728–736. [CrossRef] [PubMed]
Aravalli, R. , and Cressman, E. , 2012, “ Spectroscopic and Calorimetric Evaluation of Chemically Induced Protein Denaturation in HuH-7 Liver Cancer Cells and Impact on Cell Survival,” Technol. Cancer Res. Treat., 11(5), pp. 467–473. [CrossRef] [PubMed]
Mazur, P. , 1977, “ The Role of Intracellular Freezing in the Death of Cells Cooled at Supraoptimal Rates,” Cryobiology, 14(3), pp. 251–272. [CrossRef] [PubMed]
Cao, E. , Chen, Y. , Cui, Z. , and Foster, P. R. , 2003, “ Effect of Freezing and Thawing Rates on Denaturation of Proteins in Aqueous Solutions,” Biotechnol. Bioeng., 82(6), pp. 684–690. [CrossRef] [PubMed]
Muldrew, K. , and McGann, L. E. , 1994, “ The Osmotic Rupture Hypothesis of Intracellular Freezing Injury,” Biophys. J., 66(2), pp. 532–541. [CrossRef] [PubMed]
Lepock, J. R. , 2005, “ Measurement of Protein Stability and Protein Denaturation in Cells Using Differential Scanning Calorimetry,” Methods, 35(2), pp. 117–125. [CrossRef] [PubMed]
Lepock, J. R. , 2003, “ Cellular Effects of Hyperthermia: Relevance to the Minimum Dose for Thermal Damage,” Int. J. Hyperthermia, 19(3), pp. 252–266. [CrossRef] [PubMed]
Bischof, J. C. , Padanilam, J. , Holmes, W. H. , Ezzell, R. M. , Lee, R. C. , Tompkins, R. G. , Yarmush, M. L. , and Toner, M. , 1995, “ Dynamics of Cell Membrane Permeability Changes at Supraphysiological Temperatures,” Biophys. J., 68(6), pp. 2608–2614. [CrossRef] [PubMed]
He, X. , Bhowmick, S. , and Bischof, J. C. , 2009, “ Thermal Therapy in Urologic Systems: A Comparison of Arrhenius and Thermal Isoeffective Dose Models in Predicting Hyperthermic Injury,” ASME J. Biomech. Eng., 131(7), p. 074507. [CrossRef]
Pearce, J. A. , 2015, “ Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay,” ASME J. Biomech. Eng., 137(12), p. 121006. [CrossRef]
Wright, N. T. , 2013, “ Comparison of Models of Post-Hyperthermia Cell Survival,” ASME J. Biomech. Eng., 135(5), p. 051001. [CrossRef]
Sapareto, S. A. , and Dewey, W. C. , 1984, “ Thermal Dose Determination in Cancer Therapy,” Int. J. Radiat. Oncol., Biol., Phys., 10(6), pp. 787–800. [CrossRef]
Heisterkamp, J. , Van Hillegersberg, R. , Sinofsky, E. , and Uzermans, J. N. M. , 1997, “ Heat-Resistant Cylindrical Diffuser for Interstitial Laser Coagulation: Comparison With the Bare-Tip Fiber in a Porcine Liver Model,” Lasers Surg. Med., 20(3), pp. 304–309. [CrossRef] [PubMed]
Weaver, J. C. , and Mintzer, R. A. , 1981, “ Decreased Bilayer Stability Due to Transmembrane Potentials,” Phys. Lett. A, 86(1), pp. 57–59. [CrossRef]
Tzeis, S. , Pastromas, S. , Sikiotis, A. , and Andrikopoulos, G. , 2016, “ Cryoablation in Persistent Atrial Fibrillation—A Critical Appraisal,” Neth. Heart J., 24(9), pp. 498–507. [CrossRef] [PubMed]
Klein, G. , Oswald, H. , Gardiwal, A. , Lüsebrink, U. , Lissel, C. , Yu, H. , and Drexler, H. , 2008, “ Efficacy of Pulmonary Vein Isolation by Cryoballoon Ablation in Patients With Paroxysmal Atrial Fibrillation,” Heart Rhythm, 5(6), pp. 802–806. [CrossRef] [PubMed]
Jaïs, P. , Haïssaguerre, M. , Shah, D. C. , Chouairi, S. , Gencel, L. , Hocini, M. , and Clémenty, J. , 1997, “ A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation,” Circulation, 95(3), pp. 572–576. [CrossRef] [PubMed]
Pardoll, D. M. , 2012, “ The Blockade of Immune Checkpoints in Cancer Immunotherapy,” Nat. Rev. Cancer, 12(4), pp. 252–264. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematics showing (a) cellular protein loss method with BCA; Equation (3) was used for protein loss calculation. (b) Protein denaturation measurement method with FTIR; Equation (5) was used for cellular protein denaturation fraction calculation.

Grahic Jump Location
Fig. 2

Total protein content in lysed cell suspensions (1 × 106 cells/ml) consisting of control and IRE at 2000 V/cm after sonication; PBS without any cells is also shown for comparison; n ≥ 3 for all measurements ±SD; P value = 0.550 indicates the average protein content in control and 2000 V/cm IRE group is not statistically different

Grahic Jump Location
Fig. 5

Variable protein content within cells, aggregates and supernatant after IRE; the line shows relative native protein remaining in cell pellet after treatment; n ≥ 3 for all measurements; p < 0.001 between all data sets

Grahic Jump Location
Fig. 4

HL-1 viability, PLF and PDF after cryo, heating and IRE with varying primary parameter exposures; at increasing cryogenic end-temperatures ((a), (d) and (g)); at increasing supra-physiological end-temperatures ((b), (e), and (h)) (inset in (e) shows PLF for control on ice and at 25 °C); at increasing IRE field strengths of 250–2000 V/cm ((c), (f), and (i)); each data point represents the average of n ≥ 3 measurements ± SD. PDF in (h) is calculated based on correlated parameter fit [31]; PDF in (i) was calculated from Eq. (5). (a) Reprinted with permission from Choi et al. [40]. Copyright 2017 by Elsevier. (c) Reprinted with permission from Jiang et al. [27]. Copyright 2015 by IEEE.

Grahic Jump Location
Fig. 3

HL-1 viability after cryo, heating, and IRE exposure to primary treatment parameters: (a) viability after cells were cooled to increasingly cryogenic temperatures. (Reprinted with permission from Choi et al. [40]. Copyright 2017 by Elsevier.) (b) Viability after cells were heated to increasingly supra-physiological temperatures. (c) Viability of cell suspensions which underwent IRE at increasing electrical field strength. (Reprinted with permission from Jiang et al. [27]. Copyright 2015 by IEEE.) Each data point represents the average ±SD where each measurement included n ≥ 3 separate measurements on ≥100 cells in total.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In